
MARKOV DECISION PROCESSES WITH LARGE STATE SPACE

CHIRAG MAHESHWARI AND OJAS DESHPANDE

Abstract. Markov Decision Processes are probabilistic models where out-

comes are partly random and partly based on the actions of the agent on the

environment. The aim of the agent is to take actions in such a way so as to
maximize his expected reward. When the state space of such problems grows

too large, traditional methods such as dynamic programming, linear program-

ming are no longer efficient. Here, we present a few approaches to solving the
problem for large state spaces using convex approximations.

Motivation

A large number of phenomena are modeled as a Markov Decision Process such
as resource allocation, queue control, robotics, games. In most of the problems
state space grows exponentially requiring efficient methods to solve these models.
For e.g., in the case discrete-time queuing network problem, the state space is ex-
ponential with the number of queues which makes it almost impossible to solve it
computationally with traditional methods and requires us to resort to approxima-
tion techniques.

1. Introduction

We consider average loss as well as total cost Markov Decision problems. Given
the transition matrix and the loss function (reward function), aim is to devise a
policy that will minimize the expected loss (maximize expected reward). The same
problem with small state space has been well researched and can be solved using
methods such as dynamic programming (value iteration, policy iteration), linear
programming. With a large state spaces, these methods are not computationally
feasible.

Here we analyze two closely related methods to solve this problem (with slight
variations) for large state space. The methods presented in this represent this large
state space with a low-dimensional set of features. The methods presented here to
solve an Approximate Linear Programming problem which don’t make use of any
distribution based on the optimal policy as was required in some prior works [1].

1.1. Notation. Here, we introduce common the notations used throughout this
report. Given a set S, ∆S denotes the probability distributions over the set S.
With a matrix M of size m × n, then, Mi,: and M:,j denote the ith row and jth
column of the matrix respectively. Taking a constant vector c and another vector
v, we denote ‖v‖p,c = ‖c � |v|‖p where � symbolizes element wise multiplication.
Also comparison of two vectors is done element-wise, i.e., v ≤ c means vi ≤ ci ∀

Date: May 10, 2017.
Key words and phrases. Reinforcement Learning, Markov Decision Process, Large State Space.

1

2 CHIRAG MAHESHWARI AND OJAS DESHPANDE

i. Here, we study the problem of minimizing the expected cost and problems with
a reward function can easily be formulated in the same way by taking cost as the
negative of the given reward.

1.2. Markov Decision Process. Markov decision processes is a stochastic system
consisting of an environment and an agent wherein at each time-step agent takes an
action on the environment based on the current state and the environment responds
with a loss. Markov decision process is a 5-tuple < X ,A,P, R, γ > where,

• X is a countable set of states (state space).
• A is a countable set of actions (action space), which will be fixed for all

states.
• P ∈ P, P : X ×A → ∆X is the probability transition matrix between states

given an action.
• R : X ×A → R is an immediate cost/loss function.
• γ ∈ [0, 1] is a fixed discount factor.

1.3. Control Policy. At each time-step the agent takes an action from the set of
actions available from the set A. This action is based on the current state of the
environment (or the agent’s representation of the environment) which is a countable
set X in our case. A function π(x) : X → ∆A specifies the action or probability
distribution over the actions taken by the agent when presented with state x and
is called the policy. When we say we want to solve a MDP, that requires us to find
an optimal policy so as to minimize cost and is denoted by π∗.

Every policy π induces a probability transition matrix denoted by Pπ ∈ P.
Furthermore, the fraction of time spent by the agent in state x under the policy π
is denoted by vπ(x). Its called the stationary distribution of states. State-action
stationary distribution under policy π is denoted by µπ(x, a). These supplementary
constructs can be calculated as,

Pπ(x, x′) =
∑
a∈A

Pr(x′|x, a)π(a|x).

µπ(x, a) = vπ(x)π(x, a)

One can easily get back the policy function given the state-action stationary
distribution by a simple calculation given in eq. (1.1).

π(a|x) =
µπ(x, a)∑
a′∈A µπ(x, a)

(1.1)

1.4. Cost. Every action taken by the agent results in a cost from the environment
given by the cost function R. The agent tries to minimize its expected cost during
its lifetime. These expected costs can take the form of average cost or total cost
and our defined the subsequent subsections. The value function h(x) : X → R of
the MDP is defined as the expected cost when the agent starts from state x.

Note: For our study, we assume that γ = 1 in cases.

MARKOV DECISION PROCESSES WITH LARGE STATE SPACE 3

1.4.1. Total Cost. Starting from state x1, the value function when we model the
total cost is given by eq. (1.2)

h(x1) = lim
T→∞

E

[
T∑
t=1

γt−1l(xt, P
π)

]
(1.2)

Here, l(x, Pπ) is the immediate cost function when we follow the policy π which
implicitly induces the state transition matrix Pπ giving us the action and state at
each time step.

In the case when γ = 1, we assume that there exists a set of states S ⊂ X called
the absorbing states. This set of states has the property that l(x, a) = 0 ∀ a ∈ A,
x ∈ S and P (x, x′) = 1 ∀ x, x′ ∈ S. This keeps the value function well defined in
cases where γ = 1.

1.4.2. Average Cost. Similarly, the value function in case of average cost is defined
as when starting from state x1 is given by eq. (1.3).

h(x1) = lim
T→∞

1

T
E

[
T∑
t=1

γt−1l(xt, P
π)

]
(1.3)

If γ = 1, this value function is very well defined. Under any policy, there exists
a stationary distribution over states which is known as the property of ergodicity.
Named after this property, average cost is also known as ergodic cost.

In case of average cost, the value function is independent of the starting state,
i.e., h(x) = λ ∀x ∈ X . The immediate difference between value function and the
average cost is called the differential value function again denoted by h(x).

1.4.3. Kullback-Leibler Loss. We also study an interesting class of MDPs [2] in
section 5 where the cost function is given by Kullback-Leibler divergence. Given
some function q : X → [0, Q] called the base policy and some fixed transition matrix
P0 ∈ P, the KL loss function is given by eq. (1.4).

(1.4) l(x, P) = q(x) +
∑
x′∈X

P (x, x′) log
P (x, x′)

P0(x, x′)

Here, if P (x, x′) > 0 and P0(x, x′) = 0, then l(x, P) = ∞ which forces us to play
with distributions absolutely “continuous” with P0. One caveat with this cost is
that we tend to explore policies only around the base policy P0. It can be useful
if we already have a good enough policy induced transition matrix and we need to
optimize further.

2. Problem Definition

2.1. Bellman Optimality Equation. The bellman operator defined by eq. (2.1)
which gives us the bellman optimality equation λ∗ + h ∗ (x) = (Lh∗)(x).

(Lh)(x) = min
a∈A

(
l(x, a) +

∑
x′∈X

P(x,a),x′h

)
(2.1)

Under certain assumptions, there exist a scalar λ∗ and a vector h ∈ Rx that sat-
isfy the Bellman optimality equation. The scalar λ∗ is called the optimal average
loss, while the vector h∗ is called a differential value function. The action that min-
imizes the right-hand side of the above equation is the optimal action in state x and

4 CHIRAG MAHESHWARI AND OJAS DESHPANDE

is denoted by a(x). The optimal policy is defined by π(a(x)|x) = 1. Given l and P ,
the objective of the planner is to compute the optimal action in all states, or equiv-
alently, to find the optimal policy. For the case of total loss, the term λ∗ becomes 0.

Bellman optimality equation is generally solved via Dynamic Programming meth-
ods such as Policy Iteration, Value Iteration.

2.2. Linear Programming.

2.2.1. Primal LP. The same bellman equation for the MDP can be reformulated
as follows :

max
λ,h

λ

s.t. B(λ1 + h) ≤ l + Ph

Here, B ∈ {0, 1}XA×X is just the blown up identity matrix. Each row of a
X ×X identity matrix is copied into A consecutive rows. The above formulation
just writes down the bellman inequality for all state action pairs.

2.2.2. Dual LP. Given the stationary distributions over the state action pair under
an implicit policy π,We can write

π∗ = arg min
π

∑
x∈X

vπ(x)
∑
a∈A

π(a|x)l(x, a)

= arg min
π

∑
(x,a)∈X×A

µπ(x, a)l(x, a)

= arg min
π

µTπ l

Thus, we get our dual formulation :

min
µ∈RXA

µT l,

s.t. µT 1 = 1, µ ≥ 0, µT (P −B) = 0

While the first two constraints ensure that µ is a probability distribution, the
last one ensures that it is a stationary distribution.

3. Previous Work

MDP are easily solved when the state-space is small using methods of Linear Pro-
gramming Dynamic Programming like policy iteration, value iteration [3]. In these
methods computational complexity scales with the state and action space. In large
state spaces, exact Dynamic Programming is not feasible and we resort to Approxi-
mate Dynamic Programming (ADP) and Approximate Linear Programming (ALP)
methods. Using ADP methods like Temporal Difference-learning and Monte-Carlo
learning suffers from the problem of exploration and exploitation. Also, noted in
[1] prior work on ALP either requires access to samples from a distribution that
depends on the optimal policy or assumes the ability to solve an LP with as many
constraints as states.

MARKOV DECISION PROCESSES WITH LARGE STATE SPACE 5

4. Approximate Stationary Distribution

4.1. Approximation for large state spaces. To bring down the dimension of
the state space, each state is represented instead by a set of d features (where d is
¡¡ |X |). Denoting by Φ a XA× d matrix with columns for features, we can write µ
as Φθ. Thus, our dual problem becomes :

min
θ
θTΦT l

θTΦT 1 = 1,Φθ ≥ 0, θTΦT (P −B) = 0(4.1)

It can also be noted that adding a known stationary distribution µ0 to Φθ doesn’t
change the optimal value of the above LP. Though just adding a stationry distri-
bution doesn’t make the new distribution stationary, it still defines the policy :

πθ(a|x) =
[µ0(x, a) + φ(x,a),:θ]+∑

a′∈A[µ0(x, a′) + φ(x,a′),:θ]+

4.2. ALP Reformulation. The efficient large-scale dual ALP problem is to pro-

duce parameters θ̂ such that

µT
θ̂
l ≤ min

{
µTθ l : θ feasible for eq. (4.1)

}
in time polynomial in d and 1/ε. We have constant time access to arbitrary entries
of Φ, l, P, µ0, P

TΦ, and ITΦ.
We further convert this optimization problem to an unconstrained convex opti-

mization problem by adding violation functions of the constraints. These functions
would serve as a penalty if θ doesn’t abide by the constraints. On the other hand,
the value of the violation function is 0 if θ is in the feasible set.

µT
θ̂
l ≤ µTθ l +O

(
1

ε
‖[µ0 + Φθ]−‖1

)
+O

(
1

ε
‖(P −B)T (µ0 + Φθ)‖1

)
+O

(
ε log

1

δ

)(4.2)

4.3. Reduction to Stochastic Convex Optimization. For a constant H, we
use the following convex cost function :

c(θ) = lT (µ0 + Φθ) +H‖[µ0 + Φθ]−‖1 +H‖(P −B)T (µ0 + Φθ)‖1
= lT (µ0 + Φθ) +H‖[µ0 + Φθ]−‖1 +H‖(P −B)TΦθ]−‖1

= lT (µ0 + Φθ) +H
∑
(x,a)

∣∣[µ0(x, a) + Φ(x,a):θ]−
∣∣+H

∑
x′

∣∣(P −B)T:,x′Φθ
∣∣

We will eventually show that if we can find a solution for this cost function with

atmost O(ε) error, i.e., if we find θ̂ such that c(θ̂) ≤ c(θ)+O(ε), then eq. (4.2) holds
true with a high probability.

4.4. Gradient Calculation. Unfortunately, computing the gradient of c(θ) also
takes O(XA) time. Instead, we use unbiased estimators and use stochastic gradient
descent. Let T be the number of iterations of our algorithm. Let q1 and q2 be
distributions over the state-action and state space, respectively. Let ((xt, at)), t =

6 CHIRAG MAHESHWARI AND OJAS DESHPANDE

1...T be i.i.d. samples from q1 and (x′t)t = 1...T be i.i.d. samples from q2. At round
t, the algorithm estimates subgradient ∇c(θ) by

gt(θ) = lTΦ−H
Φ(xt,at)

q1(xt, at)
.1{µ0(xt,at)+Φ(xt,at),:

θ<0} +H
(P −B)T:,x′t

Φ

q2(x′t)
s((P −B)T:,x′tΦθ).

(4.3)

As after this update, θ might not remain in the feasible set anymore, so we
also need to take the projection of it. (Projected Subgradient descent). This
estimate is fed to the projected subgradient method, which in turn generates a
vector θt. After T rounds, we average vectors (θt), t = 1...T and obtain the final

solution θ̂T =
∑T
t=1 θt/T . Vector µ0 + Φθ̂T defines a policy, which in turn defines

a stationary distribution µθ̂T .

4.5. Analysis. In this section all the proofs related to this method would be pro-
vided. If you instead just want a summary of what’s going to happen, we show
that by using the violation functions of the constraints, if we find the solution to
this new modified ALP admitting an error of atmost ε, then after 1/ε4, we can
get a solution to our original solution with error of the order of O(ε + 1/δ) with
probability at least 1− δ.

Fast Mixing Assumption: Let Mπ be a X ×XA matrix which encodes the
policy π. For any policy π, there exists a τ(π) > 0 such that for all distributions d
and d′ over the state-action space, ‖dPMπ − d′PMπ‖1 ≤ e−1/τ(π)‖d− d′‖1

We also assume that the columns of the feature matrix are positive and sum to
1. Define

C1 = max
(x,a)∈X×A

‖Φ(x,a),:‖
q1(x, a)

,

C2 = max
x∈X

‖(P −B)T:,xΦ‖
q2(x)

These constants are going to appear in our performance bounds, thus it would
be better to choose distributions which make these bounds small.

Theorem 4.1. Consider an expanded efficient large-scale dual ALP, with violation
function V = O(V1 + V2), defined by

V1(θ) = ‖[µ0 + Φθ]−‖1
V2(θ) = ‖(P −B)T (µ0 + Φθ)‖

Assume τ = sup{τ(µθ) : θ ∈ Θ} < ∞ is finite. Suppose we apply the stochastic
subgradient method to the problem. Let ε ∈ (0, 1), and T = 1/ε4 be the number of

rounds for which we run SGD. Let H = 1/ε, and θ̂T be the output of SGD after T

rounds and let the learning rate be ηt = S/(G′
√
T), where G′ =

√
d+H(C1 +C2).

Then, for any δ ∈ (0, 1), with probability at least 1− δ,

µT
θ̂T
l ≤ min

θ∈Θ

(
µTθ l +O

(
1

ε
(V1(θ) + V2(θ))

)
+O(ε)

)
(4.4)

where the constants in the big-O notation are polynomials in S, d, C1, C2, and log(1/δ).

MARKOV DECISION PROCESSES WITH LARGE STATE SPACE 7

First of all, because V1(θ) and V2(θ) can be bounded.

V1(θ) ≤ ‖µ0‖1 + ‖Φθ‖1 ≤ 1 + S
√
d

V2(θ) ≤
∑
x′

|PT:,x′(µ0 + Φθ)|+
∑
x′

|BT:,x′(µ0 + Φθ)|

≤
∑
x′

PT:,x′ |(µ0 + Φθ)|+
∑
x′

BT:,x′ |(µ0 + Φθ)|

= 2 · 1T |µ0 + Φθ| ≤ 2 · 1T (|µ0|+ |Φθ|)

≤ 2(1 + S
√
d)

Choosing the set of features optimally would make this bound small. The optimal
choice of ε is

√
V1(θ∗) + V2(θ∗), where θ∗ is the minimizing value of eq. (4.4). As

this value is not known, we choose the value of ε based on the current value of θ
after every iteration.

Below lemma shows the relation between how much θ differs from a stationary
distribution and the value of the violation functions.

Lemma 4.2. Let u ∈ RXA be a vector. Assume,∑
(x,a)

u(x, a) = 1, ‖[u]−‖1 ≤ ε′, ‖uT (P −B)‖1 ≤ ε′′

The vector [u]+/‖[u]+‖1 defines a policy, which defines a stationary distribution
µu. We have that

‖µuu‖1 ≤ (τ(µu) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′)

Proof. Let h = [u]+/‖[u]+‖1. Then h is almost a stationary distribution, i.e.

‖hT (P −B)‖1 ≤ 2ε′ + ε′′

Note that the first assumption above simply means that ‖[u]+‖1 − ‖[u]−‖ = 1,
and therefore,

‖hT (P −B)‖1 = ‖
[u]T+
‖[u]+‖1

(P −B)‖1

=
‖(u− [u]−)T (P −B)‖1

1 + ‖[u]−‖1
≤ ‖uT (P −B)‖1 + ‖[u]T−(P −B)‖1
≤ ε′′ + ‖[u]−‖1‖(P −B)T ‖1
≤ ε′′ + 2ε′

(because the linear maps defined by P andB have operator norms (corresponding
to the 1-norm) bounded above by 1). Also,

‖h− u‖1 ≤ ‖h− [u]+‖1 + ‖[u]+ − u‖1 = ‖[u]−‖1 + ‖[u]−‖1 ≤ 2ε′

Let v0 = h be the initial state-action distribution. We will show that as we run
policy h, the state-action distribution converges to µh and this vector is also close
to h itself. We already have shown that vT0 P = hTB + v0, where norm 1 of v0 is

8 CHIRAG MAHESHWARI AND OJAS DESHPANDE

bounded by 2ε′ + ε′′. Let Mh be the X × XA matrix that encodes the policy h.
Then,

vT1 = hTPMh = (hTB + v0)Mh = hTBMh + v0M
h = hT + v0M

h = hT + v0M
h

Let v1 = v0M
hP = v0P

h and note that ‖v1‖1 = ‖PhtvT0 ‖1 ≤ ‖v0‖1 ≤ 2ε′ + ε′′.
And so,

vT2 = vT1 PM
h = hT + (v0 + v1)Mh

Generalizing this argument to k rounds,

vTk = hT + (v0 + v1 + ...+ vk−1)Mh

And as the operator norm of Mh is bounded by 1, the norm 1 of vk is also bounded
by k(2ε′+ε′′). And so, by the mixing assumption we made previously, ‖vk−µh‖1 ≤
2e−k/τ(h). The best choice of k in such a case would be τ(h) log(1/(2ε′ + ε′′)).

Theorem 4.3. Let Z be a positive constant and Z by a bounded convex subset
of Rd such that for any z ∈ Z, ‖z‖ ≤ Z. Let (ft)t=1,2,...,T be a sequcne of real-
valued convex cost functions defined over Z. Let z1, z2, ..., zT ∈ Z be defined by
z1 = 0 and zt+1 = ΠZ(zt − ηf ′t), where ΠZ is the Euclidean projection onto Z,
η > 0 is a learning rate, and f ′1, f

′
2, .. are unbiased subgradient estimates such that

E[f ′t |zt] = ∇f(zt) and ‖f ′t‖ ≤ F for some F > 0. Then, for η = Z/(F
√
T), for

any δ ∈ (0, 1), with probability at least 1− δ,

T∑
t=1

ft(zt)−min
z∈Z

T∑
t=1

ft(z) ≤ ZF
√
T +

√
(1 + 4Z2T)

(
2 log

1

δ
+ d log

(
1 +

Z2T

d

))(4.5)

The proof of the above theorem can be found in Flaxman, et al. [4].

Lemma 4.4. Under the same conditions as in the very first theorem, we now have
for any δ ∈ (0, 1), with probability 1− δ

c(θ̂T)−min
θ∈Θ

c(θ) ≤ SG′√
T

+

√
1 + 4S2T

T 2

(
2 log

1

δ
+ d log

(
1 +

1 + S2T

d

))
(4.6)

Using the above proved lemma’s and theorems, we can finally get back to proving
the main theorem. Proof. Let bT be the RHS of eq. (4.6). Then, with high
probability for θ ∈ Θ,

lT (µ0 + Φθ̂T) +HV1(θ̂T) +HV2(θ̂T) ≤ lT (µ0 + φθ) +HV1(θ) +HV2(θ) + bT .

(4.7)

From eq. (4.7) we have :

V1(θ̂T) ≤ 1

H

(
2(1 + S

√
d) +HV1(θ) +HV2(θ) + bT

)
= O(ε′)

V2(θ̂T) ≤ 1

H

(
2(1 + S

√
d) +HV1(θ) +HV2(θ) + bT

)
= O(ε′′)

From the above inequalities, we have :∣∣∣µT
θ̂T
l − (µ0 + Φθ̂)T l

∣∣∣ ≤ (τ(µθ̂T) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′)(4.8)

MARKOV DECISION PROCESSES WITH LARGE STATE SPACE 9

From eq. (4.7) we can also say that :

lT (µ0 + Φθ̂T) ≤ lT (µ0 + Φθ) +HV1(θ) +HV2(θ) + bT

Therefore, finally

µT
θ̂T
l ≤ lT (µ0 + Φθ) +HV1(θ) +HV2(θ) + bT

+ (τ(µθ̂T) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′)

≤ +µTθ l +HV1(θ) +HV2(θ) + bT + (τ(µθ̂T) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′)

+ (τ(µθ) log(1/(2V1(θ) + V2(θ))))× (2V1(θ) + V2(θ)).

As we have bT = O(H/
√
T) and H = 1/ε and T = 1/ε4, we get that with high

probability of 1− δ, for any θ ∈ Θ, µT
θ̂T
l ≤ µTθ l +O(1

ε (V1(θ) + V2(θ))) +O(ε).

The important point to note is that this bound is similar to a previous bound by
de Farias and Van Roy (2006), although their algorithm wasn’t as computationaly
feasible as this one.

5. Approximate Value Function

Here we consider the class of MDPs given by KL loss function defined in eq. (1.4)
with total cost. With KL Loss, the calculation of greedy policy becomes a linear
computation. This way, the bellman operator given in eq. (2.1) also reduces to a
much simpler version of itself which is given in eq. (5.1).

(Lh)(x) = min
P∈P

{
l(x, P) +

∑
x′∈X

P (x, x′)h(x′)

}

= min
P∈P

{
q(x) +

∑
x′∈X

P (x, x′)

[
h(x′) + log

P (x, x′)

P0(x, x′)

]}

= q(x) + min
P∈P

{∑
x′∈X

P (x, x′) log
P (x, x′)

P0(x, x′)e−h(x′)

}
(Lh)(x) = q(x)− logZ(x)(5.1)

where, Z(x) =
∑
x′∈X

P0(x, x′)e−h(x′)

Here, P (x, x′) = P0(x,x′)e−h(x′)

Z(x) minimizes the above summation and can easily be

derived given that the KL divergence of two equal distributions is 0. When we
exponentiate the bellman optimality equation with the above bellman operator,
it becomes linear opening a gate to plethora of methods to solve the MDP. This
formulization is given in eq. (5.2).

(5.2) e−h(x) = e−q(x)
∑
x′∈X

P0(x, x′)e−h(x′)

The above bellman optimality equation is easier to solve but still computationally
inefficient when the state space X becomes too large and requires one to solve
an eigenvalue decomposition in |X | dimensions. Thus, we parameterize the value
function to smaller dimension and optimize giving us a best policy in the restricted
class.

10 CHIRAG MAHESHWARI AND OJAS DESHPANDE

5.1. Family of Value Functions. We consider the class of value functions pa-
rameterized via w ∈ Rd where d � |X |. This family of value function is given by
H and defined in eq. (5.3).

(5.3) H =
{
x 7→ hw(x) := − log(Ψ(x, :)w) : w ∈ W and W ⊂ Rd

}
Here Ψ ∈ R|X |×d is feature matrix which makes the parametrization different from
ALP and ADP using a linear combination of basis functions. Also, we make a
positivity assumption that there exists a g > 0 such that ∀ x ∈ X , Ψ(x, :)w ≥ g.

5.2. Problem Reformulation. From the bellman optimality equation, we know
that we need to minimize h∗(x) such that h(x) − (Lh)(x) = 0 ∀ x ∈ X . This
difference |h − Lh| is known as the bellman gap or error. To find a good value
function, one tries to reduce the bellman gap as much as possible. From methods
like policy iteration and value iteration, we know that keeping the bellman gap
small gives a good approximation to the value function which is exploited in this
method [5]. Also, minimizing the exponentiated bellman gap reduces the bellman
gap as well as,

e−max{a,a′}|a− a′| ≤ |e−a − e−a
′
| ≤ e−min{a,a′}|a− a′|

Thus, we search for parameter ŵ ∈ W such that |e−Lhŵ − e−hŵ | < ε for some
small ε > 0.

5.3. Convex Cost. To recast our problem into a convex optimization problem, we
devise a convex cost as given in eq. (5.4) which is an estimate of the total bellman
gap and a regularization term. To sum over all the bellman errors, we take T to
be the space of trajectories starting at some state x1 and ending at an absorbing
state z ∈ S. We also take a distribution s(T) a probability distribution over all the
trajectories T ∈ T . For a positive constant H, we try to minimize the cost given
in eq. (5.4) using stochastic sub-gradient descent.

c(w) = − log(Ψ(x1, :)w)(5.4)

+H
∑
T∈T

s(T)
∑
x∈T

∣∣∣Ψ(x, :)w − e−q(x)P0(x, :)Ψw
∣∣∣

5.4. Efficient Subgradient Computation. We can easily calculate the gradient
of the above cost function and is given in eq. (5.5). But, summing over the all the
trajectories of a MDP is computationally intractable for very large MDPs. To get
an unbiased estimate of the gradient we sample an episode of the MDP (or a part
of the full episode) at every iteration and sum over only the states seen in that one

MARKOV DECISION PROCESSES WITH LARGE STATE SPACE 11

trajectory Tsampled ∼ s. This unbiased estimate is given in eq. (5.6).

∇c(w) = −
(

1

(Ψ(x1, :)w)

)
Ψ(x1, :)(5.5)

+H
∑
T∈T

s(T)
∑
x∈T

[
sign

(
Ψ(x, :)w − e−q(x)P0(z, :)Ψw

)
(

Ψ(x, :)− e−q(x)P0(z, :)Ψ
)]

∇c(w) = −
(

1

(Ψ(x1, :)w)

)
Ψ(x1, :)(5.6)

+H
∑

x∈Tsampled

[
sign

(
Ψ(x, :)w − e−q(x)P0(z, :)Ψw

)
(

Ψ(x, :)− e−q(x)P0(z, :)Ψ
)]

With an efficient way to calculate the subgradient, we can use methods like stochas-
tic subgradient descent methods which give us an ε-optimal solution in only O(1

ε2)
iterations with high-probability. Thus, the method only scales with the number of
dimensions d� |X |.

5.5. Analysis. Here we prove that finding an ε-optimal solution to the convex
optimization cost in eq. (5.4) produces a sub-optimal policy. i.e., getting an ε-
optimal ŵ such that c(ŵ) ≤ c(w) + O(ε) for any w ∈ W bounds the gap between
hŵ and hw. This is given in theorem 5.1.

Theorem 5.1. Assume that ŵ is ε-optimal and choose any H ≥ eQ−log g where
Ψ(x, :)w ≥ g∀ x ∈ X . Then, for any w ∈ W with lw = min(hw, Lhw), we have,

hPhŵ
(x1)−hPhw

(x1) ≤ ε

+ ‖Phŵ
− s‖1 max

T∈τ

∑
xinT

|hŵ(x)− Lhŵ(x)|

+
∑
T∈τ

Phw
(T)

∑
x∈T
|hw(x)− Lhw(x)|

+H
∑
T∈τ

s(T)
∑
x∈T

elw(x)|hw(x)− Lhw(x)|

where, with an abuse of notation, Ph(T) denotes the probability of trajectory T
under transition dynamics Ph.

Proof. We see that

hPh
(x1)− h(x1) =

∑
T∈T

Ph(T)
∑
x∈T

(Lh− h)(x)(5.7)

Now,

(Lhŵ)(x) = q(x)− logZ(x)

≤ Q− log g (Ψ(x, :)w ≤ g)

⇒ max{hŵ(x), (Lhŵ)(x)} ≤ Q− log g(5.8)

12 CHIRAG MAHESHWARI AND OJAS DESHPANDE

We know that ŵ is an ε-optimal solution, thus,

hŵ(x1) +H
∑
T∈T

s(T)
∑
x∈T

∣∣∣Ψ(x, :)w − e−q(x)P0(x, :)Ψw
∣∣∣ ≤

hw(x1) +H
∑
T∈T

s(T)
∑
x∈T

∣∣∣Ψ(x, :)w − e−q(x)P0(x, :)Ψw
∣∣∣+ ε

⇒ hŵ(x1) +He−Q+log g
∑
T∈T

s(T)
∑
x∈T
|hŵ(x)− Lhŵ(x)| ≤

hw(x1) +H
∑
T∈T

s(T)
∑
x∈T

e−lw(x) |hw(x)− Lhw(x)|+ ε

By eq. (5.8) and above,

hPhŵ
(x1)− hPhw

(x1) ≤ ε+
∑
T∈T

(Phŵ
(T)− s(T))

∑
x∈T
|hŵ(x)− Lhŵ(x)|

+H
∑
T∈T

s(T)
∑
x∈T

e−lw(x)|hw(x)− Lhw(x)|

+
∑
T∈T

Phw
(T)

∑
x∈T
|hw(x)− Lhw(x)|

≤ ε+ ‖Phŵ
− s‖1 max

T∈τ

∑
xinT

|hŵ(x)− Lhŵ(x)|

+
∑
T∈τ

Phw(T)
∑
x∈T
|hw(x)− Lhw(x)|

+H
∑
T∈τ

s(T)
∑
x∈T

elw(x)|hw(x)− Lhw(x)|

�

Other than the approximation error ε, the second term is the difference between
sampling distribution s and transition dynamics Phw

. The other terms are the
difference between the expected bellman error and bellman error under transition
dynamics Phw . Thus, all terms except ε are small if hw ∈ H gives a small bellman
error.

6. Conclusion

In this report we presented a way to solve MDPs with ergodic cost and a large
state space by approximating the stationary distribution over state-action pairs
and converting it into a convex optimization problem. This method proves to give
a competitive optimal policy in the lower-dimensional class of policies considered.
Also, we studied a special kind of MDP with KL total cost which produces a
linear bellman optimality equation and solved it in the class of lower-dimensional
value functions. This report outlines a basic framework of solving MDPs with
approximation methods where complexity does not scale with the size of state-
space. Essentially by taking a lower-dimensional class of policies and recasting the
bellman optimality problem into a convex optimization problem gives a competitive
policy in the subset of policies considered.

MARKOV DECISION PROCESSES WITH LARGE STATE SPACE 13

7. Future Work

If we look at the problem of minimizing total cost with absorbing states, we
can rephrase this problem as follows: Consider a graph with 1 node for each state
xi ∈ X . Additionally, consider |A| nodes adjacent to each state node. The edge
between the state node and this ’action node’(a(xi) where a ∈ A) should have a
cost of l(x, a) and have a probability of 1. From this action node, add transitions
to all state nodes with transition probability p(xi, a) and a cost of 0. The problem
now is to find the expected shortest path from the starting node to any of the
absorbing nodes in this probabilitic graph. Such problems have some work done on
them in the past [6]. If we just reverse all edges in this graph and find the shortest
path from the absorbing state to all states, we will implicitly also have the policy
for each state to get to the absorbing state quickly. It would be interesting to see
whether such an approach is actually efficient in practice and if we can provide a
efficient theoretical bound on the time and error terms here.

References

[1] Vijay V Desai, Vivek F Farias, and Ciamac C Moallemi. Approximate dynamic programming

via a smoothed linear program. Operations Research, 60(3):655–674, 2012.

[2] Emanuel Todorov et al. Linearly-solvable markov decision problems. In NIPS, pages 1369–
1376, 2006.

[3] Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming. Princeton university
press, 2015.

[4] Abraham Flaxman, Adam Kalai, and Brendan McMahan. Online convex optimization in the

bandit setting: Gradient descent without a gradient. In Flaxman, et al. (2005), pages 385–394,
January 2005.

[5] Yasin Abbasi-Yadkori, Peter Bartlett, Xi Chen, and Alan Malek. Large-scale markov decision

problems with kl control cost and its application to crowdsourcing. In International Conference
on Machine Learning, pages 1053–1062, 2015.

[6] Dimitri P Bertsekas, John N Tsitsiklis, et al. An analysis of stochastic shortest path problems.

1988.
[7] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, 2011.

[8] Yasin Abbasi-Yadkori, Peter Bartlett, and Alan Malek. Linear programming for large-scale

markov decision problems. In Proceedings of the International Conference on Machine Learn-
ing, 2014.

[9] Alan S Manne. Linear programming and sequential decisions. Management Science, 6(3):259–
267, 1960.

Courant Institute of Mathematical Science, New York University, New York

E-mail address: chirag.m@nyu.edu

Courant Institute of Mathematical Science, New York University, New York

E-mail address: oad230@nyu.edu

