
Markov Decision Processes with Large State
Space

Ojas Deshpande Chirag Maheshwari
May 9, 2017

Department of Computer Science
New York University



Table of contents

1. Introduction

2. Problem

3. Approximating Stationary Distribution (Ergodic Cost)

4. Approximating Value Function (KL Total Cost)

5. Conclusion

6. Open Problems

1



Introduction



Markov Decision Process

Markov Decision Process (MDP) is a stochastic system defined by a
tupleM =< X ,A,P,R, γ > where,

• X is a countable set of states (state space).
• A is a countable set of actions (action space).
• P ∈ P , P : X ×A → ∆X is the probability transition matrix
between states given an action.

• R : X ×A → R is an immediate reward (cost) function.
• γ ∈ [0, 1] is the discount factor.
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Control Policy

A policy π : X → ∆A denotes the probability to choose action a ∈ A
given state x ∈ X .

Each policy induces a transition matrix Pπ

Pπ(x, x′) =
∑
a∈A

p(x′|x,a)π(x,a)

Stationary Distribution of states seen under policy π is denoted by
vπ . Stationary Distribution over state-action space can be defined as,

µπ(x,a) = vπ(x)π(x,a) ⇒ π(a|x) = µ(x,a)∑
a′∈A µ(x,a)

Aim is to device an efficient policy to maximize expected reward
(minimize expected cost).
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Total Costs

Starting from some initial state X1, total cost is defined as:

h(x1) = lim
T→∞

E

[ T∑
t=1

γt−1l(xt,Pπ)
]

Also called the value function.

Note: for our purposes we assume γ = 1.

To make the total cost well defined, we have a set of absorbing
states S ⊂ X such that, l(s,P) = 0 and P(s, s) = 1.
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Average Costs

Starting from some initial state X1, average cost a.k.a. ergodic cost is
defined as:

J(x1) = lim
T→∞

1
TE
[ T∑
t=1

l(xt,Pπ)
]

As there exists a Stationary Distribution over the states (property of
ergodicity) this average cost is well defined and is independent of
the starting state. Thus,

J(x) = λ ∀x ∈ X

The differential value function denoted by h(x) is the difference
between actual cost and average cost.
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Applications

MDPs can be used to model many real-life problems

• Resource Allocation
• Queue Control
• Routing
• Inventory Control
• Robotics
• Games
• Asset Pricing

• Risk Management

• Power Grid Management

• Crowd-sourcing Budget
Allocation

• Sequential Clinical Trials

• Scheduling systems
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Problem



Bellman Optimality Equation

Bellman optimality operator defined by,

(Lh)(x) = min
a∈A

(
l(x,a) +

∑
x′∈X

P(x,a),x′
)
h

gives the bellman optimality equation [5],

λ∗ + h∗(x) = (Lh∗)(x)

• λ = 0 in case of Total Cost problems
• Solving an MDP is computationally intensive and is P-complete.
• Policy Iteration and Value Iteration has O(|X |2|A|) per-iteration
complexity.
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Linear Programming

Linear Programming formulation of the same problem can be written
as [4],

Primal: max
λ,h

λ

such that, B(λ1+ h) ≤ l+ Ph

Dual: min
µ∈RXA

µ⊤l

such that, µ⊤1 = 1, µ ≥ 0, µ⊤(P− B) = 0

• Number of variables and constraints scale with |XA|
• Approximate Linear Programming(ALP) methods assume the
ability to solve an LP with as many constraints as states or
access to the stationary distribution from the optimal policy [3].
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Approximating Stationary
Distribution (Ergodic Cost)



Problem Re-Formulation

Approximating space-action stationary distribution using a
parameterized feature matrix such that µ = (µ0 +Φθ). The dual
problem is reformulated as [2],

min
θ

(µ0 +Φθ)⊤l

such that, (µ0 +Φθ)⊤1 = 1, (µ0 +Φθ) ≥ 0, (µ0 +Φθ)⊤(P− B) = 1

Above LP can be again reformulated as an ALP names as the
expanded efficient large-scale dual ALP,

µ⊤
θ̂
l ≤ min

{
µ⊤
θ l+

1
ϵ
V(θ) : θ ∈ Rd

}
+ O(ϵ)

where, d≪ |XA| is the number of features. µ0 is a known stationary
distribution. Φ is a feature matrix of size (XA× d). θ are the
parameters and V(θ) is a violation function for θ.

9



Recasting to Convex Problem

ALP can be converted into an unconstrained optimization over Θ by
adding constraint violations.

For a fixed constant H > 0 ALP is converted to a convex problem with
the cost given as,

c(θ) = l⊤(µ0 +Φθ)

+ H
∑
(x,a)

∣∣∣[µ0(x,a) + Φ(x,a),:θ
]
−

∣∣∣︸ ︷︷ ︸
(µ0+Φθ)≥0

+ H
∑
x′

∣∣∣(P− B)⊤:,x′ Φθ
∣∣∣︸ ︷︷ ︸

(µ0+Φθ)⊤(P−B)=1
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Gradient Calculation

Calculating the gradients of c(θ) is still on order of O(|X ||A|).

An unbiased estimate of gradient can be calculated by sampling
(x,a) and x′ for T iterations and at round t = {1, 2, . . . , T},

∇c(θ) ≈ gt(θ) =l⊤Φ− H
Φ(xt,at),:

q1(xt,at)
I{µ0(xt,at)+Φ(xt,at),:θ>0}

+ H
(P− B)⊤:,x′tΦ
q2(x′t)

((P− B)⊤:,x′tΦθ)

where q1 and q2 are distribution by which (x,a) and x′ are sampled
respectively.

This estimate is used in the projected subgradient algorithm to
minimize c(θ).
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Analysis

Theorem
Consider an expanded efficient large scale dual ALP problem and
assume τ := sup{τ(θ) : θ ∈ Θ} < ∞ is finite. Suppose we apply the
stochastic subgradient method to the problem. Let ϵ ∈ (0, 1). Let
T = 1

ϵ4 be the number of rounds and H = 1
ϵ be the constraints

multiplier in the subgradient estimate. Let θ̂T be the output of the
method after T rounds and let the learning rate be ηt =

S
G′

√
T , where

G′ =
√
d+ H(C1 + C2). Then for any δ ∈ (0, 1), with probability at least

1− δ,

µ⊤
θ̂T
l ≤ min

θ∈Θ

(
µ⊤
θ l+ O

(
1
ϵ

(
∥[µ0 +Φθ]−∥1 + ∥(P− B)⊤(µ0 +Φθ)∥1

))
+ O(ϵ)

)
where the constants hidden in the big-O notation are polynomials in
S,d, C1, C2, and log( 1δ )
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Approximating Value Function (KL
Total Cost)



Kullback-Leibler Total Cost

Kullback-Leibler (KL) loss function is defined as,

l(x,P) = q(x) +
∑
x′∈X

P(x, x′) log P(x, x′)
P0(x, x′)

where,

arbitrary state cost q : X → [0,Q]
P ∈ P

fixed P0 ∈ P
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Problem Re-Formulation - I

In the optimal setting (Lh)(x) = h(x) [5] where L is the bellman
operator. With KL loss function,

argmin
P∈P

{
l(x,P) +

∑
x′∈X

P(x, x′)h(x′)
}

=
P0(x, x′)e−h(x

′)∑
x′ P0(x, x′)e−h(x

′)

Which gives,

(Lh)(x) = q(x)− log
(∑

x′
P0(x, x′)e−h(x

′)

)

This considerably simplifies the Bellman optimality equation to:

e−h(x) = e−q(x)P0(x, :)e−h(x
′)
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Problem Re-Formulation - II

Taking a family of value functions [1],

H = {x 7→ hw(x) := − log(Ψ(x, :)w) : w ∈ W}

where Ψ ∈ R|X |×d is a feature matrix andW ⊂ Rd is a bounded set.

The problem can be reformulated in the following constraint
problem,

min
x∈W

hw(x1)

such that, e−hw(x) − e−(Lhw)(x) = 0,∀x ∈ X 11

Here, e−hw(x) − e−(Lhw)(x) is the Bellman error h(x)− (Lh)(x) in an
exponentiated form.
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Recasting to Convex Problem

The constraint optimization problem can be converted to an convex
optimization problem by adding constraint violation.

Taking a fixed hyper-parameter H > 0 the cost is formulated as,

c(w) =− log(Ψ(x1, :)w)

+ H
∑
T∈τ

s(T)
∑
x∈T

∣∣∣Ψ(x, :)w− e−q(x)P0(x, :)Ψw
∣∣∣

where,

• τ is the set of all trajectories starting with state x1 and ending at
an absorbing state z.

• s is the probability distribution over τ .
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Gradient Calculation

For large problems it’s computationally intractable to sum over all
the trajectories τ .

To get an unbiased estimate of the subgradient we sample a
trajectory T ∼ s (episode of the MDP),

∇c(w) = r(w) =−
(

1
Ψ(x1, :)w

)
Ψ(x1, :)

+ H
∑
x∈T

[
sign

(
Ψ(x, :)w− e−q(x)P0(x, :)Ψw

)
(
Ψ(x, :)− e−q(x)P0(x, :)Ψ

)]

This gradient is used in the projected subgradient algorithm to
minimize c(w).
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Analysis

Theorem
Assume that ŵ is ϵ-optimal and choose any H ≥ eQ−log g where
Ψ(x, :)w ≥ g∀x ∈ X . Then, for any w ∈ W with lw = min(hw, Lhw), we
have,

hPhŵ (x1)−hPhw (x1) ≤ ϵ

+ ∥Phŵ − s∥1max
T∈τ

∑
xinT

|hŵ(x)− Lhŵ(x)|

+
∑
T∈τ

Phw(T)
∑
x∈T

|hw(x)− Lhw(x)|

+ H
∑
T∈τ

s(T)
∑
x∈T

elw(x)|hw(x)− Lhw(x)|

where, with an abuse of notation, Ph(T) denotes the probability of
trajectory T under transition dynamics Ph.
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Conclusion



Summary

• Parameterized stationary distribution in the dual problem which
hasn’t been explored before.

• Parameterized value function without using linear combination
basis function which usually is the case.

• Reformulated constraint optimization problems into
unconstrained convex optimization.

• Gave unbiased estimates to efficiently calculate subgradient.
• Under weak assumptions, the average stochastic subgradient
method produces a parameter competitive to the whole
parameter space.

19



Open Problems



Future Work

• Frame the problem of MDP with absorbing states as stochastic
shortest path problem.

• Finding other regulatory/violation function which gives a better
bound.

• Control the distribution mismatch between Phŵ and s.
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Questions?
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