Enhancing Cluster Labeling using Wikipedia

Abhinav Gupta
New York University

abhinavg@nyu.edu

ABSTRACT

A lot of work has been done on labeling clusters in a way such
that they represent what each cluster represent. Wikipedia
is a very common tool used to get some semantic relationship
among different words. Each wikipedia page has a title and
some categories which are semantically close to the queried
word.

We exploit this relationship among words to label a set
of clusters more efficiently. We use 20-newsgroup dataset
which has documents from 5 diverse categories. We ap-
ply different types of clustering algorithms on the training
set. We extract the important words from each cluster us-
ing some distance measure like Jensen-Shannon Divergence
(JSD) and cluster-biased-weighting for each term. We call
this set of words important labels. We query each of the im-
portant term in Wikipedia and extract the title and the cat-
egories. We call this set of labels extracted from Wikipedia
as candidate labels.

We use 2 types of Judge namely, MI (Mutual Information)
Judge and SP (Score Propagation) Judge for scoring both
the important labels and candidate labels. Then we rank
each of the label for every cluster according to the score
obtained from theses judges. Finally we find the similarity
with the ground truth labels where we compare each label
with every true label using a trained model like Word2Vec
or Wordnet.

Keywords

Clustering; labeling; Wikipedia; Information Retrieval; Nat-
ural Language Processing

1. INTRODUCTION

There is a vast amount of textual data available in this
digital age which brings about the need for efficient methods
for processing and organizing in a way that is easily man-
ageable. The popular approach for categorizing textual data
into coherent sets of documents is by clustering. The goal
of clustering is to partition the set of input documents into
multiple coherent sets, where the documents in one set are
similar to each other based on a given metric and dissimilar
to document in other sets. Note that clustering algorithms
largely depend on the distance or similarity metric used.

To work with the clustered documents in an informed way,
it is necessary to tag or label the created clusters with human
understandable titles. cluster labeling can be seen as ex-
tracting important features from the set of documents which
best describe the cluster itself. There has been a lot of work

Chirag Maheshwari
New York University

chirag.m@nyu.edu

done in providing quality cluster descriptors [2, 3, 5, 6]. But,
often the cluster descriptors obtained from the textual data
itself fail to describe the cluster radically or generally consist
of terms which individually may be deemed non-sensible.
In this project we cluster-label the 20-newsgroup dataset
using the vast volume of human curated articles from wikipe-
dia and it’s search functionality to improve the quality of
cluster descriptors and also analyze how the different clus-
tering techniques affect these feature extraction or cluster
descriptor extraction [1]. In the subsequent section we will
provide information on the framework pipeline and its com-
ponents and the experiments performed and their results.

2. FRAMEWORK PIPELINE

We created an end-to-end pipeline in Python ! for clus-
ter labeling using Wikipedia and evaluating the generated
labels with the ground truth. The general flow of the sys-
tem is as follows. The system first downloads and retrieves
a set of documents from the internet which serves as the
input documents. These documents are pre-processed and
cleaned to only contain Alphanumeric character as described
in section 2.1. This cleaning has been done to improve
the performance of clustering algorithm. Next these pre-
processed documents are passed to the clustering algorithm
with the number of clusters as described in section 2.2.
Every cluster is separated and sent to processing for fea-
ture extraction or important term extraction which uses
Cluster-Biased Term Weighing and Jensen-Shannon Diver-
gence. These techniques are described in detail in the sec-
tion 2.3. Now that the important terms have been extracted,
these terms are searched over the web on Wikipedia giving a
big set of Candidate Labels which are then judged based on
PMI and SP metric to give a final set of cluster descriptors.
These are described in detail in sections 2.4 and 2.5

2.1 Indexing and Document Vector

Input documents are first pre-processed to only contain al-
phanumeric characters. This has evidently improved cluster-
ing of the documents in more coherent sets. After the basic
pre-processing, these documents are parsed and tokenized to
document vectors which are stored on the disc partitioned
by document. The weights of every term is identified by
the term frequency-inverse document frequency a.k.a tf-idf
weighing scheme of the vector space model. This has been
done by storing two sets of data, namely, Term Frequency
and Inverse Document frequency. This helps us easily query

!Code available on github repository:
https://github.com/chirag1992m/clustering-labeling

term frequency of a term ¢ in a given document d which is
represented as tf(t,d) and inverse document frequency for
a given term 4 in the entire collection represented as idf(t).
The set of all documents is represented by D.

In general, this tf-idf vector is very sparse for a given
document and for any further calculations and algorithms
we input the set of documents as a sparse matriz. This
helps in saving the disc and memory usage while storing
these documents and even running algorithms on them.

ZdED 1

idf (t) = log —— 224D~
#(t) = log >dep Leftay>0

2.2 Clustering

The clustering algorithm is done to partition the set of
documents into coherent sets where the document in one set
is similar to the documents in the same set and dissimilar
to the documents in other sets.

We'll represent the set of clusters as C = {C1,Cb,...Cp}
where n is the number of clusters and |J]_, C; = D. Note
that one document can be a part of multiple clusters which
happens in Gaussian Mixture Model.

Although, the pipeline is not limited to a specific clus-
tering algorithm; Here we explored multiple clustering algo-
rithms, namely, K-Means with random and K-Means++ ini-
tialization, Gaussian Mixture Model, Agglomerative Clus-
tering, and Birch Clustering.

For every clustering algorithm, the input was the Tf-Idf
sparse matrix of the documents. The words with very low tf-
idf value were ignored and only the most prominent 10000
features were taken into consideration. This was done to
fasten the clustering algorithm and also resulted in better
clustering of the documents. Other modifications made to
the tf-idf vector for clustering was that any term with a
very low and high term-frequency were ignored. This re-
moved very common words like ‘the’; ‘a’; ‘and’ and not so
common words like ‘11112121’ which were the result of poor
pre-processing techniques. The clustering algorithms used
will be described in detail in the upcoming sub-sections.

2.2.1 K-Means

K-Means is a clustering algorithm which partitions the
given document as vectors into n clusters. It does that by
minimizing the sum of euclidean distance between document
of one cluster over all the clusters. In doing so, it partitions
the vector space into voronoi cells and thus a document can
only belong to one cluster. The result of the K-means par-
tition can be represented by the cluster centers and one can
calculate the cluster participation by finding the cluster cen-
ter with minimum distance.

2.2.2 Gaussian Mixture Model

Gaussian Mixture Model can be thought of as K-Means
on steroids but much slower in converging to a solution. In
a Gaussian Mixture Model, every cluster is represented by a
gaussian distribution with unknown parameters and is thus
a probabilistic model. This allows for a document to be a
part of multiple clusters at the same time. The caveat with
Gaussian Mixture Model is that it does not scale well with
the number of documents.

2.2.3 Agglomerative Clustering

Agglomerative Clustering is a Hierarchical Clustering mech-
anism which forms clusters by repeatedly forming larger
cluster from smaller clusters. Initially all the documents
are taken as individual clusters. This algorithm easily scales
with the number of documents used.

2.2.4 Birch Clustering

Birch Clustering is again a Hierarchical Clustering which
tends to handle noise effectively. We hoped that it would
easily figure out the miscellaneous category in 20-newsgroup
dataset which wasn’t the case as explained the in the exper-
iments section.

2.3 Important Label Extraction

This was one of the most important part of the project
as it involves feature extraction from the clusters formed
which coherently distinguishes one cluster from the other
clusters. These important terms/labels will be represented
as T(C) where C is a given cluster. Given a cluster C' €
C, we try to find T(C) = ti,t2,...,tr which is an ordered
set. A term t; can be any n-Gram but for our purposes we
have extracted 1-Grams as important terms. We focused on
two different techniques namely, cluster-biased weighing and
Jensen-Shannon divergence.

2.3.1 Cluster-Biased Term Weighing

A cluster is best represented by the cluster’s center; the
weights to every term is dependent on the times it appears
in the documents of a cluster and inversely proportional to
the times it appears in the whole collection. It can be imag-
ined as the Inverse Document Frequency biased towards the
whole cluster instead of every document thought of as an
individual cluster. The weight is represented as w(t, C').

w(t,C) =ctf(t,C) x cdf (t,C) x idf (t)

where,

ctf(t,C) = |—é‘ St d)

deC
cdf (t,C) = log(n(t,C) + 1)

n(t,C) = > liwa>o

deC

In this scheme, the higher the weight the better the term
represents that cluster.

2.3.2 Jensen-Shannon Divergence

Jensen-Shannon Divergence is similar to Kullback-Leibler
Divergence (KLD) and is a measure of similarity between
probability distributions. It is used as it is symmetric and is
always non-negative making it ideal to be used as distance
metric between two probability distribution. For important
term extraction, we search for terms which maximizes the
distance (Jensen-Shannon Divergence) between the cluster
and the whole collection (without the cluster itself). Every
term actually participates in the distance but we select the
top K terms according to its contribution to the distance.
Jesen-Shannon Divergence is represented as JSD(t, C) and
is calculated as follows.

JSD(t, P(O)|P(C)) =3 KLD(t, P(C)|[M)
+ S KLD(t, P(C)|M)
where,

M=2(P(C)+ P(C))

1+ X(1)
KLD(t, X||Y) =X(t) x 1 —_—
(0 X]1Y) =x(0) x tog (15540
Here, P(C'), P(C) represents the probability distribution
of cluster C and collection C respectively. X and Y are any
distribution over the term t.

2.4 Candidate Label Extraction

Now that we have our set of important labels T(C) we
need to find some more labels which are semantically close
to these important words which can act as a candidate for
labeling the cluster.

One way is that we can just use the important terms ex-
tracted in the previous section and do the scoring accord-
ingly. But many a times it has been found [4]

that the labels do not totally capture the semantic meaning
of the cluster. It is possible to have better terms to act as
a representative for the cluster. We try to get as many se-
mantically close words that we can get so as to capture the
total content in the cluster.

One of the most common ways to get semantically close
words of a given word is using Wikipedia. We just need to
query a word or a phrase in Wikipedia which will return a
page with a title and a set of categories. Now of course there
will be some labels for which a wikipedia page does not exist
so we skip those words and just add the word as it is in the
candidate label list.

Now for scoring (in the next section) each label we need to
store the relative ranking of the label and the categories with
respect to the initial important label ranking. So we store
each candidate label with a ranking score according to the
order of their occurrence in the Wikipedia search list. We
will call this set of candidate labels as L(C). We will use the
L(C) and the T(C) for scoring in the next section.

2.5 Scoring

At this stage we have both the important labels T(C) and
the candidate labels L(C). We need some sort of scoring
mechanism which can rank each of the labels (or candidates)
according to their individual score and semantic score.
There are two types of judge proposed in earlier work [1]
which are described in detail in the next 2 subsections.

2.5.1 Ml Judge

The MI (Mutual Information) judge scores each candidate
label by the average pointwise mutual information (PMI) of
the label with the set of the clusteraAZs important terms,
with respect to a given external textual corpus. So the PMI
score acts as a semantic distance for each label with respect
to the cluster content. It is a very common approach which
is widely used in labeling cluster of blogs or old newsgroups
which have some structural similarity.

The MI judge takes as input a list of important labels L(C),
a list of candidate labels L(C) and an external corpus to

evaluate each of the label. Given a label 1 € L(C) and T(C),
we find MI(1,T(C)) as follows:

MI(,T(C)) = Z PMI(l, t|corpus) - w(t)
teT(C)

where w(t) gives the relative importance of the correspond-
ing term in T(C) and } ;1) w(t) = 1. Although, For cal-
culating MI we need the PMI scores for each (label, term)
pair which is defined as follows:

PMI(l, t|corpus) = log (Pr(l, t|corpus))

Pr(l|corpus) - Pr(t|corpus)

where Pr represents the probability of the corresponding
term, label or (label,term) pair which is defined as follows

Pr(z|corpus) = #(w|corpus)

#(corpus)
where #(z|corpus) represents the count of x in the corpus.
Note that here x can be any word-ngram (unigram, bigram,
trigram, 4-grams and 5-grams). Depending on the type of
ngram the denominator will also change depicting the count
of the corresponding ngram in the corpus.
For our experiment we used many corpora including;:

e Brown corpus which consists of readings of the English
language from Brown University.

e Twitter corpus which includes random tweets from
people.

e The complete 20-newsgroup dataset.

Note that all these datasets were preprocessed so that it
was possible to find the ngram labels in the corpus since the
labels were extracted from the preprocessed dataset.

2.5.2 SP Judge

The SP (Score Propagation) Judge as the name suggests
propagates the score from the original document ranking list
where we get the important labels and the candidate labels.
In this type of judge, we deal with important labels and
the candidate labels separately as their scores are mutually
independent to each other. We describe the procedure for
candidate labels but the same can be applied to the impor-
tant terms as well.

Given a search query q which was extracted during the can-

didate label extraction step, we get a list of documents D(q).

Now for a given candidate label [, we get the total sum of

that label (split into different terms) across all the docu-

ments d € D(q) and [€ d.
- ¥ seordd)

deD(q);led n

where n(d) represents the total number of candidate labels

extracted from the query q and score(d) represents the in-

verse of the rank of the document in the D(q) list.

After getting the score of each split term, we sum up the

score of each label to get the total score corresponding to

that label.

wkw)= > w(l)

leL(C);kwel

Algorithm Top-5 Important Words using JSD

K-Means God, Jesus, Israel, Israeli, Jews
Agglomerative | God, Christ, Christians, Bible, Faith
Birch encryption, clipper, chip, keys, escrow
GMM Jesus, us, gov, truth, evidence

Figure 1: Comparing clustering algorithms for Mid-
dle Eastern Category in 20-newsgroup dataset.

Now we take the average of each candidate label [and find
the SP score as follows:

SPUID(q) = —— 3 w(kw)
w0

ke

Important terms are scored in a similar way using the
scores from the distance metric (JSD or cluster-biased weigh-
ing) described in section-2.3.

2.6 Evaluation

Now we have predicted labels for each cluster and their
corresponding MI or SP judge score, we rank all the labels
and assign the best label for each cluster. Since we also have
the ground truth labels we can find how close our predicted
labels are using some similarity metric.

Word2Vec or Wordnet are very common packages which find
the similarity score between two words. So we split the
predicted labels and the true labels into single terms and
find the score for each (predicted,true) pair. Then we sum
up all the scores for a given predicted label and rank each
label with the best true label score. Let us denote d(y’,y)
as the distance between predicted label /' and true label 3.

1
= max ———
y'etopK (C) d(y', y)

score = Z s(C)

ceC

3. EXPERIMENTS

We started with different clustering algorithms and ex-
tracted the top-5 terms using JSD. For every category we
manually checked if the important terms are in anyway able
to describe the category they supposed to. The results are
shown in fig. 1. As can be seen from the table, K-Means
with K-means++ initialization easily surpasses the perfor-
mance of every other clustering algorithm. This result made
us to go forward with K-Means clustering for the upcoming
parts of the pipeline and experiments.

In figure-2, we compare both the distance measure cluster
based cluster-biased weighing and the Jensen-Shannon Di-
vergence for extracting the important labels from the cluster.
The final metric is based on the Accuracy Score as described
in the evaluations. We do not use any wikipedia extracted
terms in this analysis.

s(C)

In figure-3, we compare the performance of both the judges
showing the improvement in accuracy of the wikipedia ex-
tracted labels. The final metric again is based on the Accu-
racy Score as described in the evaluations.

As we see from both figure-2 and 3, using wikipedia ex-
tracted labels increased the relative accuracy by around 80%.

Naive-weighting Jsb

70 T T H H T 1

52.5

35

Accuracy Score

17.5

1 5 10 20 30 40 50
No of top-k important terms

Figure 2: Comparing the two types of distance mea-
sure for extracting important terms.

MI Judge SP Judge

90

67.5

45

Accuracy Score

225

1 5 10 20 30 40 50
No of top-k important terms

Figure 3: Comparing the scores of the two judges.

MI Judge SP Judge

90

78.75

67.5

Accuracy Score

56.25

45

5 10 15 20 25 30
No of documents taken from Wikipedia

Figure 4: Analysis on the number of documents used
from Wikipedia.

In figure-4, we compared the performance by choosing dif-
ferent amounts of wikipedia docs when an important label
is queried in wikipedia.

4. CONCLUSIONS

In this project we established that cluster labeling can be

greatly enhanced by the vast volume of articles and their as-
sociated meta-data available on Wikipedia. They improve
the semantic meaning of cluster labels and are even robust
to noisy important terms extracted. Experimentation with
different clustering algorithms also helps us understand that
the underlying structure of clusters is important for a supe-
rior performance of cluster labeling.
This method of labeling cluster can be used to cluster and
label unsupervised data which can later on be compared to
the ground truth labels. The metric defined in this work is
also novel and can be extended for comapring different types
of datasets.

5. FUTURE WORK

In this work we only considered the title and categories
of the Wikipedia articles. Using the hierarchical structure
of clusters and labeling them from specific to more general
labels as we go up the hierarchical tree could further im-
prove these cluster descriptors. In addition to datasets’ hi-
erarchical structure, Wikipedia articles are hyperlinked and
connected to each other making a graphical structure which
can be further exploited to retrieve semantic relationships
between cluster labels.

6. REFERENCES

[1] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing
cluster labeling using wikipedia. In Proceedings of the
32nd international ACM SIGIR conference on Research
and development in information retrieval, pages
139-146. ACM, 2009.

[2] S.-L. Chuang and L.-F. Chien. A practical web-based
approach to generating topic hierarchy for text
segments. In Proceedings of the thirteenth ACM

(4]

5

international conference on Information and knowledge
management, pages 127-136. ACM, 2004.

D. R. Cutting, D. R. Karger, and J. O. Pedersen.
Constant interaction-time scatter/gather browsing of
very large document collections. In Proceedings of the
16th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 126-134. ACM, 1993.

F. Geraci, M. Pellegrini, M. Maggini, and F. Sebastiani.
Cluster generation and cluster labelling for web
snippets: A fast and accurate hierarchical solution. In
International Symposium on String Processing and
Information Retrieval, pages 25-36. Springer, 2006.

E. Glover, D. M. Pennock, S. Lawrence, and

R. Krovetz. Inferring hierarchical descriptions. In
Proceedings of the eleventh international conference on
Information and knowledge management, pages
507-514. ACM, 2002.

E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M.
Pennock, and G. W. Flake. Using web structure for
classifying and describing web pages. In Proceedings of
the 11th international conference on World Wide Web,
pages 562-569. ACM, 2002.

