
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Convolutional	Neural	Networks	to	Detect	
Severity	of	Diabetic	Retinopathy	

	
	

Chirag	Maheshwari	
Jaspinder	Singh	



Introduction	
	

Diabetic	retinopathy,	an	ocular	manifestation	of	diabetes,	is	the	leading	cause	of	
blindness	in	the	working-age	population	of	the	developed	world	and	affects	over	93	million	
people	worldwide.	It	affects	up	to	80	percent	of	patients	who	have	had	diabetes	for	more	than	
20	years.	Left	untreated,	it	can	eventually	lead	to	blindness,	but	it	is	difficult	to	detect	as	it	
shows	few	symptoms	until	it	is	too	late	for	effective	treatment.		

Current	methods	of	detecting	diabetic	retinopathy	are	time-consuming	and	require	a	
trained	clinician	that	can	perform	a	variety	of	tests,	one	which	is	fundus	photography.	Fundus	
photography	involves	taking	a	photograph	of	the	back	of	the	eye	so	structures	such	as	the	
central	and	peripheral	retina,	optic	disc,	and	macula	are	captured.	Signs	to	look	out	for	are	
leaking	blood	vessels,	retinal	swelling,	fatty	deposits	on	the	retina,	damaged	nerve	tissue,	or	
any	other	changes	to	the	blood	vessels.	However,	as	we	can	see	from	the	following	example,	it	
is	difficult	to	detect	the	difference	between	a	healthy	eye	and	one	with	diabetic	retinopathy.	
	

	 The	image	on	the	left	shows	the	fundus	photograph	of	a	completely	healthy	eye,	while	the	image	
	 on	the	right	shows	severe	signs	of	diabetic	retinopathy.	
	

Due	to	the	resource	intensive	process	and	expertise	needed	to	accurately	identify	
diabetic	retinopathy,	not	all	populations	throughout	the	world	can	get	the	disease	diagnosed	in	
time.	The	World	Health	Organization	predicts	that	the	number	of	cases	of	people	with	diabetes	
will	increase	from	about	8%	of	the	global	population	to	10%	by	the	year	2030	[1].	80%	of	those	
people	live	in	low-	and	middle-income	countries	which	don’t	have	the	proper	facilities	or	
expertise	to	correctly	diagnose	a	large	number	of	people.	Therefore,	it	is	important	to	try	to	get	
systems	that	can	either	assist	or	autonomously	detect	diabetic	retinopathy	from	images	to	help	
prevent	blindness	in	millions	of	people	who	don’t	have	access	to	adequate	healthcare.		

Previous	work	done	to	detect	diabetic	retinopathy	used	algorithms	such	as	feature	
extraction	[2].	Such	methods	were	used	to	detect	the	size	of	the	optic	disc	in	the	image	by	
measuring	the	contours	using	a	Hough	transform,	try	to	detect	fat	deposits,	extracting	the	area	
of	the	blood	vessels,	and	trying	to	detect	the	texture	features	of	the	image.	These	studies	only	



used	about	400	images	which	were	homogenous	and	achieved	a	sensitivity	of	82%	and	a	
specificity	of	about	86%.	Considering	that	fundus	photographs	won’t	always	have	the	same	
brightness,	contrast,	or	other	features,	this	was	not	an	acceptable	classifier	to	detect	diabetic	
retinopathy.	Nor	did	this	classifier	detect	the	differences	between	various	severities	of	diabetic	
retinopathy	since	it	used	feature	detection	to	only	check	for	size	of	optic	disc	or	blood	vessels.	
	
	
Overview	
	
Dataset	
	
	 We	decided	to	use	a	convolutional	neural	network	to	detect	diabetic	retinopathy	in	a	
set	of	images.	A	total	of	35,126	high	resolution	images	were	provided	by	EyePACS	and	they	
were	separated	into	five	different	classes.	The	five	states	of	severity	are:	0	–	No	diabetic	
retinopathy,	1	–	mild	diabetic	retinopathy,	which	usually	has	cases	of	microaneurysms,	2	–	
moderate	diabetic	retinopathy,	which	has	microaneurysms	and	fuzzy	light	splotches,	3	–	Severe	
diabetic	retinopathy,	which	has	shunt	vessels,	venous	bleeding,	intra-retinal	hemorrhages	but	
no	new	blood	vessels	growing,	and	4	–	Proliferative	diabetic	retinopathy,	which	has	
neovascularization,	new	blood	vessels	growing,	and	vitreous/pre-retinal	hemorrhage	[3].	The	
data	set	has	highly	imbalanced	class	labels	which	creates	difficulty	when	building	a	classifier	
and	needs	to	be	addressed.	
	

	
	 	

Examples	of	the	various	severities	of	diabetic	retinopathy	of	classes	1,2,3,4	–	left	to	right	
	

	
	
	
	
Class	imbalance	of	the	data	set	
0	-	No	DR	–	25,180	images	
1	–	Mild	NDPR	–	2,443	images	
2	–	Moderate	NDPR	–	5,292	images	
3	–	Severe	NPRDR	–	873	images	
4	–	PDR	–	708	images	
	
	



Pre-processing	
	
	 The	majority	of	the	images	had	lots	of	noise,	variations	in	the	brightness,	under	or	over	
exposed,	came	in	various	sizes	and	aspect	ratios	(about	80%	of	the	images	had	a	3:2	aspect	
ratio,	the	rest	a	4:3),	and	often	had	excess	background	black	space.	The	images	are	often	large	
too,	usually	contain	millions	of	pixels	and	are	larger	than	one	megabyte	in	size.		
	

	
Most	images	have	large	areas	of	black	background	that	needed	to	be	cropped	out.	The	leftmost	image	is	an	
example	of	an	image	darker	than	many	of	the	others.	Middle	image	shows	an	example	of	over-exposure.	Right	
image	is	an	ideal	fundus	photograph	that	has	proper	exposure	and	sharp	contrast.	
	
	 We	wanted	to	remove	as	much	of	the	black	background	as	possible	while	avoiding	
cropping	any	part	of	the	eye	in	the	image.	Since	the	images	were	of	different	sizes,	we	couldn’t	
not	just	batch	crop	them	so	had	to	devise	a	different	technique.	The	technique	we	used	was	to	
first	convert	the	image	to	grayscale	and	keep	any	part	of	the	image	above	a	certain	threshold,	
in	our	case	we	used	10	since	the	black	background	would	have	a	value	of	0.	After	cropping	the	
image,	we	then	performed	principal	component	analysis	using	the	entire	data	set	and	getting	
the	eigenvalue	for	each	RGB	space.	This	allows	us	the	catch	a	property	of	natural	images	that	
object	identity	is	invariant	to	changes	in	the	intensity	and	color	of	the	illumination	[4].	After	
that	we	than	performed	the	normalization	on	all	the	images	using	mean	and	variance.	Finally,	
we	resized	the	images	so	training	them	on	a	neural	network	would	take	a	reasonable	amount	of	
time.	We	created	two	different	sets,	one	of	size	128x128	and	another	of	size	256x256.	This	also	
allows	us	to	test	how	much	of	a	difference	in	accuracy	we	get	if	we	use	images	of	different	
sizes.	
	 	

The	original	image	on	the	left,	after	automatically	cropping,	and	after	PCA	and	normalization.	
	
	



Pipeline		
	
	 After	pre-processing	the	images	and	creating	new	sets,	we	jittered	each	batch	while	
running	the	training	program	to	help	prevent	overfitting	[5].	The	different	methods	applied	
were	color	cast	where	there	is	a	probability	of	adding/subtracting	a	constant	to	each	channel,	
saturation	jitter,	brightness	jitter,	rotation,	horizontal	flip,	vertical	flip,	and	translation.	Each	
method	had	a	probability	of	0.5	of	being	applied.	Convolutional	neural	networks	have	a	built-in	
invariance	to	small	translations	and	rotations	so	if	the	dataset	does	not	originally	contain	them,	
adding	them	in	gives	a	more	robust	training	set	and	can	avoid	overfitting.		
	 We	also	tried	random	resampling	due	to	the	imbalance	of	images	in	different	classes	but	
we	noticed	that	it	vastly	increased	the	running	time	of	the	program	and	were	not	able	finish	
running	the	training	program	in	time.		
	
Network	Architecture		
	
	 We	tried	a	variety	of	different	architectures	for	our	convolutional	neural	network	with	
some	that	take	in	image	inputs	of	size	128x128	pixels	and	others	size	256x256	pixels.	Our	first	
model	was	a	deep	architecture	that	took	in	images	of	256x256	pixels	and	modeled	after	the	
architecture	of	DeepSense.io	[6]	but	we	also	added	batch	normalization	after	every	
convolution.	Batch	normalization	helps	with	not	having	to	worry	about	properly	initializing	the	
hyper-parameters	of	a	neural	network	and	eliminates	the	need	for	dropout	[7].	Input	was	
3x256x256	with	either	3x3	or	2x2	strides,	the	architecture	had	9	convolution	layers,	5	pooling	
layers,	used	Rectified	Linear	Unit	(ReLU)	as	the	non-linearity	and	dropout	at	the	end	with	
probability	of	0.5	which	should	help	prevent	overfitting	by	introducing	stochastic	behavior	in	
the	forward	pass	of	the	neural	network	[8].	The	ReLU	layer	is	an	activation	function	of		

𝑓 𝑥 = 	max	(0, 𝑥)	
where	x	is	the	input	to	the	neuron.	A	smooth	approximation	is	the	analytic	function	

𝑓 𝑥 = 	ln	(1 + 𝑒1)	
	 Other	architectures	we	tried	out	used	3x128x128	sized	images	to	help	speed	up	the	
training	time.	We	tried	out	more	simple	architectures	with	4,	5,	6,	7,	and	8	layers	of	
convolution.	Some	of	these	models	did	not	have	batch	normalization	or	dropout	added	into	the	
model	architecture.	We	tried	out	these	simple	models	to	speed	up	the	time	it	takes	to	train	the	
models	and	to	see	how	much	accuracy	improves	as	we	add	a	convolution	layer	in	our	model.	
The	simple	architectures	used	3x3	strides	for	all	convolution	layers	and	used	either	TanH	or	
leaky-ReLU	with	a	parameter	of	0.1	for	non-linearity.	Leaky	ReLU	were	used	to	help	prevent	the	
“dying	ReLU”	problem	so	instead	of	the	function	being	0,	it	will	have	a	negative	slope	[9].	
	 When	running	the	training	program,	we	used	the	same	hyper-parameters.	We	used	a	
consistent	batch	size	of	128	between	all	models,	ran	it	for	50	epochs,	a	momentum	of	0.9,	
learning	rate	of	0.1,	and	a	weight	decay	of	1e-4	and	a	learning	rate	decay	of	1e-4.	Using	a	
consistent	set	of	hyper-parameters	allowed	us	to	better	compare	the	accuracy	of	the	different	
models.	
	
	
	



	
First	layer	(left)	and	second	layer	(right)	of	weights	from	the	8-layer	architecture	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Third	(left)	and	fourth	(right)	layers	of	weights	from	the	8-layer	architecture.	
	
	
Analysis	
	
	 Looking	at	weights	from	the	8-layer	architecture,	we	notice	that	once	it	starts	going	into	
the	third	and	fourth	layer,	some	of	the	different	feature	maps	are	starting	to	look	similar	to	one	
another	which	may	make	it	difficult	to	differentiate	one	from	another.	For	example,	the	third	
layer	has	many	images	where	it	looks	uniform	gray.	This	is	as	opposed	to	the	first	two	layers	
which	have	feature	maps	that	are	different	form	one	another.	One	possible	cause	for	this	is	not	
letting	the	training	model	run	for	enough	epochs.	Experimenting	with	different	hyper-
parameters	such	as	changing	the	learning	rate	may	helped	converge	faster	and	given	better	
accuracy.	This	architecture	is	similar	to	the	other	simple	layered	architecture	and	those	were	
also	run	with	the	same	parameters	which	is	why	the	images	from	them	looked	similar	to	the	8-
layered	convolutional	neural	network.		
		 Looking	at	the	effect	of	training	with	and	without	normalization,	we	can	see	that	adding	
in	batch	normalization	makes	about	a	5%	difference	in	the	training	and	reduces	the	amount	of	
randomness	(such	as	the	size	of	spikes)	and	noise.	After	about	50	epochs,	the	percentage	error	
with	normalization	in	our	models	is	about	8%	while	without	normalization	it	is	at	16%	with	
spikes.	Since	the	data	is	not	normalized,	that	means	the	ranges	of	the	feature	values	are	



different	for	each	feature	and	therefore	the	learning	rate	causes	corrections	in	each	dimension	
that	differs	from	one	another.	Therefore,	it	might	be	overcompensating	a	correction	in	one	
weight	dimension	while	undercompensating	in	another.	
	 Looking	at	the	convergence	plot	for	the	8-layer	architecture,	we	see	that	the	training	
error	decreases	over	time	with	an	increase	after	epoch	60.	However,	the	validation	error	seems	
to	hover	around	25%.	This	may	be	possible	because	the	learning	rate	and/or	momentum	is	too	
high.	Therefore,	it	may	be	stuck	in	some	local	minima	since	there	percent	error	is	no	longer	
decreasing.	

	 	 	
Looking	at	the	training	and	test	errors	after	75	epochs	for	all	the	models	created,	we	notice	that	
the	validation	error	decreases	as	more	layers	are	used	in	a	neural	network	architecture.	
Compared	to	the	benchmark,	the	validation	error	does	not	perform	better	until	the	neural	
network	has	at	least	6	layers,	and	Deepsense,	which	had	9	layers	performs	the	best.	One	major	
issue	that	may	affect	the	error	rates	is	the	class	imbalance	in	the	data	set.	As	noted	before,	the	
majority	of	the	images	are	considered	to	be	healthy	and	only	a	small	portion	have	a	case	of	
severe	diabetic	retinopathy.	An	imbalanced	training	set	can	have	a	severely	negative	impact	on	
the	performance	of	a	cnn,	and	a	balanced	training	set	would	yield	much	better	results	[10].	
	
Network	 Training	Error	 Validation	Error	
Benchmark	 -	 26.52	
4	Layer	 6.6428	 36.4465	
5	Layer	 7.9271	 37.2722	
6	Layer	 27.1787	 25.1993	
7	Layer	 5.6274	 25.6177	
8	Layer	 11.5648	 24.8442	
DeepSense	 5.6375	 20.3924	
	
	



Conclusion	
	
	 We	have	shown	that	it	is	possible	to	classify	the	severity	of	diabetic	retinopathy	from	
fundus	photographs	of	the	eye.	Improvements	to	the	accuracy	can	be	made	by	building	the	
proper	architecture	for	the	neural	network	and	properly	processing	the	images.	Most	
importantly,	especially	for	classifying	medical	data,	is	to	make	sure	to	use	random	resampling	in	
during	the	training	process.	Medical	data	will	have	a	healthy	classification	for	the	majority	of	
the	classes	since	a	specific	disease	may	not	be	as	common.	A	properly	trained	CNN	can	be	of	
benefit	since	it	can	train	thousands	of	images	in	real-time	and	can	be	of	assistance	to	areas	
where	facilities	to	properly	diagnose	diabetic	retinopathy	is	not	available.		
	
	

Bibliography	
	
[1]		 S.	Akter,	M.	Rahman,	S.	Abe	and	P.	Sultana,	Prevalence	of	diabetes	and	prediabetes	and	

their	risk	factors	among	Bangladeshi	adults:	a	nationwide	survey,	World	Health	
Organization,	2014.		

[2]		 T.	Walter,	J.-C.	Klein,	P.	Massin	and	A.	Erginay,	A	Contribution	of	Image	Processing	to	the	
Diagnosis	of	Diabetic	Retinopathy—Detection	of	Exudates	in	Color	Fundus	Images	of	the	
Human	Retina,	IEEE	TRANSACTIONS	ON	MEDICAL	IMAGING,	2002.		

[3]		 B.	Klein,	M.	Davis,	P.	Segal,	J.	Long	and	A.	Harris,	Diabetic	Retinopathy:	Assessment	of	
Severity	and	Progression,	Opthalmology,	1984.		

[4]		 A.	Krizhevsky,	I.	Sutskever	and	G.	Hinton,	ImageNet	Classification	with	Deep	Convolutional	
Neural	Networks,	NIPS,	2012.		

[5]		 P.	Sermanet	and	Y.	LeCun,	Traffic	Sign	Recognition	with	Multi-Scale	Convolutional	
Networks,	IJCNN,	2011.		

[6]		 R.	Bogucki,	"Diagnosing	diabetic	retinopathy	with	deep	learning,"	DeepSense.io,	3	
September	2015.	[Online].	Available:	https://deepsense.io/diagnosing-diabetic-
retinopathy-with-deep-learning/.	[Accessed	23	December	2016].	

[7]		 S.	Ioffe	and	C.	Szegedy,	Batch	Normalization:	Accelerating	Deep	Network	Training	b	y	
Reducing	Internal	Covariate	Shift,	Google,	2015.		

[8]		 N.	Srivastava,	G.	Hinton,	A.	Krizhevsky,	I.	Sutskever	and	R.	Salakhutdinov,	Dropout:	A	
Simple	Way	to	Prevent	Neural	Networks	from	Overfitting,	Journal	of	Machine	Learning	
Research,	2014.		

[9]		 D.-A.	Clevert,	T.	Unterthiner	and	S.	Hochreiter,	Fast	And	Accurate	Deep	Network	Learning	
By	Exponential	Linear	Units,	ICLR,	2015.		

[10]		P.	Hensman	and	D.	Masko,	The	Impact	of	Imbalanced	Training	Data	for	Convolutional	
Neural	Networks,	KTH	School	of	Computer	Science	and	Communication,	2015.		

	
	


