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ABSTRACT

The distributed coordination and control of a set of autonomous mobile

robots is a problem widely studied in a variety of fields, such as engineerig,

artificial intelligence, artificial life, robotics. The problem of pattern forma-

tion by autonomous robots is practically important, because, if the robots

can form a given pattern, they can agree on their respective roles in any

coordinated action.

In the first phase, two distributed algorithms were proposed and simulated

which when executed by a set of autonomous, anonymous mobile robots lying

on a circle (non-uniform) will move to form a uniform circle. The robots were

assumed to be dimensionless (point-based robots), anonymous, oblivious,

haveing no common coordination system but a common sense of orientation

of those axes.

In the second phase, we extended our previous work by taking a more

practical approach. The assumption of modelling robots as dimensionless

points does not reflect reality as real robots are not points but have a physical

extent. Thus, the robots were modelled as fat robots: closed transparent unit

discs. We solved the minimum perimeter circle formation problem with a set

of anonymous, oblivious, transparent fat-robots in a synchronized setting.
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Chapter 1

Introduction

From an engineering point of view, the problem of coordinating a set of au-

tonomous, mobile robots for the purpose of cooperatively performing a task

has been studied extensively over the past decade. As discussed in the sub-

sequent sections, distributed approach to control a set of weak autonomous

robots instead of few strong autonomous robots has many advantages. In

this project we focus on point-based robots to form an uniform circle and

then shift our focus to a more practical approach to model robots as unit-

discs. In the remainder of the report, we will propose and discuss some

distributed algorithms to control a set of autonomous robots in the different

models described.

1.1 Motivation

An interesting trend has been observed in robotic research, both from engi-

neering and behavioural viewpoints. They are readily moving away from the

design and deployment of few, rather complex, usually expensive, application-

specific robots. In fact, within this trend, the interest has shifted towards the
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design and use of a large number of “generic” robots which are very simple,

with very limited capabilities, and thus relatively inexpensive but capable

of performing (together) rather complex tasks. The main idea is to let each

robot execute a simple algorithm and plan its motion adaptively based on

the observed movement of other robots, so that the robots as a group will

achieve the given goal.

There is an increasing number of applications that benefit from having

a team of autonomous robots to cooperate and complete various tasks in

a self-organizing manner. Such application tasks may require, for example,

that robots work in dangerous and harsh environments (e.g., for space, un-

derwater or military purposes) or achieve high accuracy or speed (e.g., in

nanotechnology, scientisc computing). It is usually desirable for the robots

to be as simple as possible and have limited computing power, in order to be

able to produce them fast in large numbers and cheap.

The advantages of such an approach are clear and many. They include:

reduced costs (due to simpler engineering and construction costs, faster de-

velopment and deployment time, etc); ease of system expandability (just add

a few more robots) which in turns allows for incremental and on-demand de-

ployment (use only as few robots as you need and when you need them); sim-

ple and affordable fault-tolerance capabilities (replace just the faulty robots);

re-usability of the robots in different applications (reprogram the system to

perform a different task).

1.2 Problem from 10000 feet

A fundamental problem that has drawn much attention recently is gathering,

where a team of autonomous mobile robots must gather to a certain point or
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region or form a certain formation (e.g., geometric shape) in the plane. The

problem has been studied under various modeling assumptions; for example,

asynchronous, semi-synchronous and synchronous settings have been consid-

ered. Robots may have a common coordination system, or have common

sense of direction and use compasses to navigate in the plane; they may have

stable memory or be history-oblivious. In all considered models, robots are

equipped with a vision device (e.g., a camera) and their range of visibility is

either limited or unlimited. Robots operate under the Look-Compute-Move

cycle. Within a cycle, a robot takes a snapshot of the plane (Look), performs

some local computation (Compute), and possibly decides to move to some

other point in the plane (Move).

In particular, we address the problem of circle formation by a group

of mobile robots. The problem of circle formation has interesting applica-

tions. For instance, consider the context of space exploration and the initial

preparation of a zone. A group of robots could be sent and after landing at

random locations, would self-organize to form the initial infrastructure for

later expeditions. Also, pattern formation is the first step towards flocking,

i.e., allowing a group of robots to move in formation. Moreover, the forma-

tion of geometrical patterns and flocking are both useful in themselves for

the self-positioning of mobile base stations in a mobile ad-hoc network and

self-deployment of sensor rings.

In layman terms, suppose that a schoolteacher wants her 100 children

in the playground to form a circle so that, for instance, they can play a

game. She might draw a circle on the ground as a guideline or even give each

child a specific position to move to. What if the teacher does not provide

such assistance? Even without such assistance, the children may still be

able to form a sufficiently good approximation of a circle if each of them
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moves adaptively based on the movement of other children and knowledge

of the shape of a circle. If successful, this method can be called a distributed

solution to the circle formation problem for children. A similar distributed

approach can be used for controlling a group of multiple mobile robots.

Earlier we proposed two algorithms as a solution to uniform transforma-

tion problem by making a strong assumption in our model. In this project, we

propose solution to the minimum circle formation problem with transparent

fat-robots in a synchronous setting.

1.3 Definitions

We start with introducing some definitions that will be used in the rest of

the report.

Definition 1.3.1. Robots . We assume n synchronous/asynchronous, fault-

free robots that can move along straight lines on the (infinite) plane. The

robots can be point-based or closed unit-discs. They are identical and anony-

mous (i.e., they are indistinguishable). They do not have access to any global

coordination system, but we assume chirality : the robots agree on the orien-

tation of the axes. Robots are equipped with a 360-degree-angle vision device

(e.g., camera) that enables the robots to take snapshots of the plane. The vi-

sion device has unlimited range and captures any point of the plane provided

there is no obstacle (e.g., another robot if robots are non-transparent).

Definition 1.3.2. Computational Cycle .The robots execute the same

deterministic algorithm, which takes as input the observed positions of the

robots within the visibility radius, and returns a destination point towards

which the executing robot moves. A robot is initially in a waiting state

(Wait); asynchronously and independently from the other robots, it observes
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the environment in its area of visibility (Look); it calculates its destination

point based only on the observed locations of the robots in its (Compute);

it then moves towards that point (Move); after the move it goes back to a

waiting state. The sequence: Wait Look Compute Move will be called

a computation cycle (or briefly cycle) of a robot. The operations performed

by the robots in each state will be now described in more details.

Wait The robot is idle. A robot cannot stay idle indefinitely unless it is

faulty. At the beginning all the robots are in the Wait state.

Look The robot observes the world by activating its sensors which will re-

turn a snapshot of the positions of all other robots with respect to its

local coordinate system. Each robot is viewed as a point, hence its

position in the plane is given by its coordinates, and the result of the

snapshot is just a set of coordinates in its local coordinate system: this

set forms the view of the world of r . More formally, the view of the

world of r at time t is defined as the last snapshot taken at a time

smaller than or equal to t.

Compute The robot performs a local computation according to its deter-

ministic, oblivious algorithm A. The result of the computation is a

destination point; if this point is the current location, the robot stays

still (null movement).

Move If the point computed in the previous state is the current location,

the robot does not move; otherwise it moves towards the destination

point. The robot moves by an unpredictable amount of space, which

is assumed neither infinite, nor infinitesimally small. Hence, the robot

can only go towards its goal, but it cannot predict how far it will go
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in the current cycle, because it can stop anytime during its movement;

that is, a robot can stop before reaching its destination point.

Definition 1.3.3. Asynchronous Setting . The robots are said to be in a

asynchronous setting if the amount of time spent in observation, in compu-

tation, in movement, and in action is negligible but otherwise unpredictable.

In particular, the robots do not (need to) have a common notion of time.

Each robot makes steps at unpredictable time instants. The (global) time

that passes between two successive steps of the same robot is finite; that

is, any desired finite number of steps could have been made by any robot

after some finite amount of time. In addition, we do not make any timing

assumptions within a step: The time that passes after the robot has observed

the positions of all others and before it starts moving is arbitrary, but finite.

That is, the actual move of a robot may be based on a situation that lies

arbitrarily far in the past, and therefore it may be totally different from the

current situation. We feel that this assumption of asynchronicity within a

step is important in a totally asynchronous environment, since we want to

give each robot enough time to perform its local computation. In particular,

the amount of time spent in Wait, Look, Compute, Move, and idle states

is finite but otherwise unpredictable. As a result, the robots do not have a

common notion of time, robots can be seen while moving, and computations

can be made based on obsolete observations.

Definition 1.3.4. Synchronous Setting . The robots are said to be in a

synchronous setting if the robots execute their activities in an atomic and

instantaneous fashion, we say that the robots are atomically synchronized,

and that they move according to an schedule. In a synchronized setting, the

amount of time spent in Wait, Look, Compute, Move cycle is finite and equal
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for every robot. In particular, wait, look, compute and move states are all

synchronized with a central clock.

Definition 1.3.5. Geometric Configuration . A geometric configuration

is a vector G = {c1, c2, ..., cn} where each ci represents the center of the

position of robot ri on the plane. So, a configuration can be viewed as a

snapshot of the robots on the plane. Note that the fact that robots are fat

prohibits the formation of a configuration in which any two robots share more

than a point in the plane. (Two robots share a point if the discs representing

them touch each other.)

We say that a geometric configuration G is connected if between any two

points of any two robots there is a polygonal line each of whose points belongs

to some robot. Informally, a configuration is connected if every robot touches

another robot and all robots form together a connected formation.

Definition 1.3.6. Visibility and fully visible configuration . This def-

inition is only valid for non-transparent robots. We say that point p in the

plane is visible by a robot ri (or equivalently, ri can see p) if there is a point

pi in the circle bounding robot ri such that the straight segment (pi, p) does

not contain any point of any other robot. So, a robot ri can see another

robot rj if there is at least one point on the bounding circle of rj that is

visible by ri . Given a geometric configuration G, robot ri has full visibility

in G if ri can see all other n− 1 robots. If all robots have full visibility in G,

then configuration G is fully visible

Definition 1.3.7. Uniform Circle Formation . The problem of uniform

circle formation can be divided into two parts:

1. Forming a circle, possibly an non-uniform one. (Circle Formation Prob-

lem)
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2. Positioning the robots evenly on the boundary, i.e., forming a regular

polygon. (Uniform Transformation)

Definition 1.3.8. Circle Formation . Given a group of n robots r1, r2, ....., rn

with distinct positions and located arbitrarily on the plane, arrange them to

eventually form a non-degenrate circle.

Definition 1.3.9. Uniform Transformation . Given a group of n robots

r1, r2, ....., rn with distinct positions and located arbitrarily on a plane on the

boundary of some non-degenrate circle (i.e., with finite radius greater than

zero), eventually arrange them at regular intervals of the boundary of the

circle.

Definition 1.3.10. Minimum Perimeter Circle Formation . Given

a group of n fat robots {r1, r2, ....., rn} with distinct positions and located

arbitrarily on a plane, eventually arrange them at a boundary of a circle

such that the perimeter is minimum and the final configuration is connected

and terminal.
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Chapter 2

Literature Review

A vast amount of researches exist in the context of cooperative mobile robotics.

Most of it uses diverse heuristics such as free market optimization [9] or swarm

intelligence [22]. However, only few studies take the problem from a com-

putational standpoint. This can be partly explained by the difficulty of the

task, and the fact that heuristics are perceived as a way to circumvent that

difficulty. Debest [6] briefly discusses the formation of a circle by a group

of mobile robots as an illustration of self-stabilizing distributed algorithms.

He discusses the problem, but does not really provide an algorithm. Sugi-

hara and Suzuki [25] propose several algorithms for the formation of various

geometrical patterns. They propose an algorithm for the formation of an

approximation of a circle, based on heuristics. In some cases, the shape ob-

tained with their algorithm is a Reuleaux triangle (a hybrid shape, between a

triangle and a circle) rather than a circle. Suzuki and Yamashita [26] propose

a non-oblivious algorithm for the formation of a regular polygon. In other

words, the robots eventually reach a configuration in which they are arranged

at regular intervals on the boundary of a circle. To achieve this, they must

however require the robots to be able to remember all past actions. Under
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the same model, Ando et al. [19] propose an algorithm by which robots with

a limited range of vision gather to a point. Flocchini et al. [14] give an

algorithm to solve the same problem in a slightly different model; dropping

the assumption of instantaneous computation and movement, but assuming

a common sense of direction as given by compasses. Flocchini et al. [13]

study the solvability of the formation of arbitrary patterns, depending on

how much common knowledge the robots initially have about a global coor-

dinate system. Uny Cao et al. [27] provide a wide survey of researches in

cooperative mobile robotics, and observe that only few researches take the

problem from a computational point of view. This observation is later echoed

by Flocchini et al. [14]. The remainder of the chapter summarizes the

assumptions and results collected from various research papers.

From the works of G. Prencipe [23], given n robots with the following

capabilities cannot solve the gathering problem:

• Autonomous

• Anonymous

• Homogeneous

• Oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

• Do not detect multiplicity

• Initial positions are all distinct
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Under the above assumptions G. Prencipe [23] says that,

Theorem 2.0.11. In both the asynchronous and the atomic time setting,

there exists no deterministic oblivious algorithm that solves the gathering

problem in a finite number of cycles, hence in finite time, for a set of n ≥ 2

robots.

In another work by M. Yamashita [26], after taking an extra assumption

of multiplicity detection, they proved that gathering problem is solvable. The

assumptions taken by M. Yamashita [26] are as follows:

• Autonomous

• Anonymous

• Homogeneous

• Oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

• Detect multiplicity

• Initial positions are all distinct

Under the above assumptions, M. Yamashita [26] quotes,

Theorem 2.0.12. There exists an oblivious algorithm for solving gathering

problem in a finite number of steps for n ≥ 3.
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Proof. It suffices to give an oblivious algorithm A that solves the gathering

problem in a finite number of cycles. The idea is the following. Starting from

distinct initial positions, we move the robots in such a way that eventually

there will be exactly one position, say, p, that two or more robots occupy.

Once such a distribution is reached, all robots that are not located at p move

toward p in such a way that no two robots will occupy the same position

at any location other than p. Then all robots eventually occupy p, solving

gathering problem in finite time.

Such a distribution can be obtained if each robot, each time it becomes

active, determines which of the following cases applies and moves to a new

position (or remains stationary) as specified. Since a robots action is based

only on the current robot distribution, this strategy can be implemented as

an oblivious algorithm.

Case 1. n = 3 p1, p2 and p3 denote the positions of the three robots

1. If n = 3 and p1, p2, p3 are collinear with p2 in the middle, then the

robots at p1 and p3 move toward p2 while the robot at p2 remains

stationary. Then eventually two robots occupy p2.

2. If n = 3 and p1, p2 and p3 form an isosceles triangle with ‖p1p2‖ =

‖p1p3‖ 6= ‖p2p3‖, then the robot at p1 moves toward the foot of the

perpendicular drop from its current position to p2 p3 in such a way

that the robots do not form an equilateral triangle at any time,

while the robots at p2 and p3 remain stationary. Then eventually

the robots become collinear and the problem is reduced to part 1.

3. If n = 3 and the lengths of the three sides of triangle p1p2p3 are

all different, say, ‖p1p2‖ > ‖p1p3‖ > ‖p2p3‖, then the robot at p3

moves toward the foot of the perpendicular drop from its current
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position to p1p2 while the robots at p1 and p2 remain stationary.

Then eventually the robots become collinear and the problem is

reduced to part 1.

4. If n = 3 and p1, p2, p3 form an equilateral triangle, then every

robot moves towards the center of the triangle. Since all robots

can move up to at least a constant distance ε greater than 0 in one

step, if part 4 continues to hold then eventually either the robots

meet at the center, or the triangle they form becomes no longer

equilateral and the problem is reduced to part 2 or part 3.

Case 2. n ≥ 4 Ct denotes the smallest enclosing circle of the robots at time

t

1. If n ≥ 4 and there is exactly one robot r in the interior of Ct,

then r moves toward the position of any one robot, say, r , on

the circumference of Ct while all other robots remain stationary.

Then eventually r and r occupy the same position.

2. If n ≥ 4 and there are two or more robots in the interior of Ct , then

these robots move toward the center of Ct while all other robots

remain stationary (so that the center of Ct remains unchanged).

Then eventually at least two robots reach the center.

3. If n ≥ 4 and there are no robots in the interior of Ct , then every

robot moves toward the center of Ct . Since all robots can move up

to at least a constant distance ε greater than 0 in one step, if part

3 continues to hold, then eventually the radius of Ct becomes at

most . Once this happens, then the next time some robot moves,

say, at t’ , either (i) two or more robots occupy the center of Ct or

(ii) there is exactly one robot r at the center of C ′t , and therefore
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there is a robot that is not on Ct (and the problem is reduced to

part 1 or part 2) since a cycle passing through r and a point on

Ct intersects with Ct at most at two points.

From the works of M. Yamashita [26], given n robots can solve the pattern

formation problem under the following assumptions:

• Autonomous

• Anonymous

• Homogeneous

• nonoblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

• Detect multiplicity

• Initial positions are all distinct

M. Yamashita [26] says that,

Theorem 2.0.13. There exists an algorithm for solving formation problem

for a predicate π iff either π = πpoint or π = πregular

Although, M. Yamashita [26] proves that regular pattern formation is

solvable if the robots are nonoblivious, he poses the same problem by oblivious

robots regardless of initial state as an open problem.
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In a research by P. Widmayer [11] some possibility and impossibility results

on pattern formation were given under the following assumptions:

• Autonomous

• Anonymous

• Homogeneous

• oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

The results can be summarized as:

Theorem 2.0.14. 1. With common knowledge of two axes directions and

orientations, the robots can form an arbitrary given pattern.

2. With common knowledge on only one axis direction and orientation,

the pattern formation problem is unsolvable when n is even; it can be

solved if n is odd.

3. With common knowledge on only one axis direction, the robots can form

an arbitrary pattern if n is odd.

4. With no common knowledge, the robots cannot form an arbitrary given

pattern.

Theorem 2.0.15. With common knowledge on only one axis direction and

orientation, there exists no deterministic algorithm that allows an even num-

ber of robots to form an asymmetric pattern. Moreover, in this case they can
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only form symmetric patterns that have at least one symmetric axis not pass-

ing through a vertex of the input pattern.

Results on limited visibilty were also given in P. Widmayer [11]. These

results can be summarized as:

Lemma 2.0.16. If the visibility graph is disconnected, the pattern formation

problem (or actually any problem) is unsolvable.

Theorem 2.0.17. There exists a deterministic algorithm that let the robots

gather in one point in a finite number of movements, in the limited visibility

setting and assuming common knowledge on direction and orientation of both

axes.

Up until the work of Czyzowicz et al. [4], the gathering problem was

considered only under the assumption that robots are a point on the plane

and are transparent, that is, a robot can see through another robot. These

assumptions do not reflect reality, as real robots are not points, but instead

they have a physical extent. Furthermore, robots are not transparent, that

is, robots may block the view of other robots or robots may collide. Having

this in mind, Czyzowicz et al. [4] initiated the study of the gathering problem

with fat robots, that is, non-transparent unit-disks (disks of radius of 1 unit).

As fat robots cannot occupy the same space on the plane, the gathering

problem can no longer require robots to gather at the same point. Instead,

per [4], gathering fat robots means forming a configuration for which the

union of all discs representing them is connected. The model considered in

[4] is the following: Robots operate in Look-Compute-Move cycles, they are

identical, anonymous, history oblivious, non-transparent, and fat. They do

not share a common coordination system and the only means of coordination

is by vision; robots have unlimited visibly, unless their view is obstructed
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by another robot. An asynchronous setting is considered, modeled by an

adaptive adversary that can stop any robot for finite time, control the “speed”

of any robot or cause robots moving into intersecting trajectories to collide.

Under this model, the authors present solutions for the gathering problem

for three and four robots. The proposed solutions consider exhaustively all

possible classes of configurations in which robots may be found; a different

gathering strategy corresponds to each possible case. As this approach cannot

be generalized for larger number of robots (the cases grow exponentially as

the number of robots increases), the authors left open the question of whether

it is possible to solve gathering for any collection of n ≥ 5 fat robots.

Work by C. Agathangelou [1] extended the work of Czyzowicz et al. [4]

by giving a solution for n ≥ 5 fat robots. With the additional assumption

of chirality, C. Agathangelou [1] presented a distributed algorithm for the

gathering problem for any number n of fat robots. Also, a solution to circle

formation problem by transparent fat robots was given by S. Datta [5].
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Chapter 3

Uniform Circle Formation

Uniform circle Formation problem can be divided into two subparts as fol-

lows:

1. Forming a circle, possibly an non-uniform one. (Circle Formation Prob-

lem)

2. Positioning the robots evenly on the boundary, i.e., forming a regular

polygon. (Uniform Transformation)

The algorithms to solve the above two problems have been given sep-

arately in the upcoming sections. Starting with the definitions and nota-

tions required, algorithm for circle formation and uniform transformation

are given.

A deterministic algorithm to form a non-uniform circle is provided. Un-

fortunately, the uniform transformation problem is only solved as a “conver-

gence problem”. But, assuming some constraints and power on the robots,

the uniform transformation problem can be solved deterministically in finite

time. These assumptions are:

• Robots have a common sense of “rotational” orientation. (chirality)
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• The two oblivious algorithms presented separately assume the follow-

ing:

1. There is one faulty robot, i.e., a robot which cannot move when

the robots are on the boundary of a circle.

2. Robots can only move in the anti-clockwise direction. (All robots

will move in the same direction as they have a common sense of

orientation).

3.1 Definitions and Notations

Some definition and notations used in the presentation of the algorithm.

Definition 3.1.1. Position. Given a robot ri, pi(t) denotes its position at

time t, according to some global x-y coordinate system, and pi(0) is its initial

position. P (t) = pi (t) 1 ≤ i ≤ n denotes the multiset of the positions of

all robots at time t. When this is not ambiguous, we sometimes mention a

robot, implicitly referring to its position rather than the robot itself.

Definition 3.1.2. Voronoi Diagram. The Voronoi diagram Voronoi(P)

of a set of points P = p1, p2, ..., pn is a subdivision of the plane into n cells,

one for each point in P. The cells have the property that a point q belongs to

the Voronoi cell of point pi, denoted Vcellpi (P), if and only if, for any other

point pj ∈ P, dist(q, pi ) ¡ dist(q, pj ), where dist(p, q) is the Euclidean

distance between p and q. In particular, the strict inequality means that

points located on the boundary of the Voronoi diagram do not belong to

any Voronoi cell. A Voronoi diagram is for instance depicted on Figure

3.1. Significantly more details about Voronoi diagrams and their principal

applications are surveyed by Aurenhammer [2].
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Definition 3.1.3. Smallest enclosing circle. The smallest enclosing

circle of a set of points P is denoted by SEC(P). It can be defined by either

two opposite points, or by at least three points. The smallest enclosing circle

is unique, and can be computed in O(n log n) [24].

3.2 Circle Formation

Assumptions taken:

• Autonomous

• Anonymous

• Homogeneous

• Oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

• multiplicity

• Initial positions are all distinct

In addition to the above assumptions, we impose some restriction on the

movement of the robots to solve the problem. Doing so ensures that (1) no

two robots occupy the same position simultaneously (Restr. 1), and that (2)

the smallest circle enclosing all robots remains invariant (Restr. 24). The

restrictions are (they are also shown as figures):
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1. A robot always moves toward a point that is inside its Voronoi cell.

2. No robot ever moves beyond the boundary of the smallest circle enclos-

ing all robots.

3. All robots located on the boundary of the smallest enclosing circle

remain on that boundary.

4. Robots located on the circumference of the smallest enclosing circle

do not move unless there are at least three such robots with distinct

positions.

“Algorithm 1” given by A. Konagaya [7] for circle formation. The given

oblivious algorithm deterministically solves the circle formation problem in

a finite number of cycles.

Algorithm 1 Formation of an (arbitrary) circle (code executed by robot ri)

function Acircle(P, pi)

1: if pi ∈ SEC(P) then
2: stay still {ri already on boundary.}
3: else
4: if Vcellpi (P)

⋂
SEC(P) 6= Φ then

5: target ← Vcellpi (P)
⋃

SEC(P)
⋃

Voronoi(P - {pi})
6: move to target
7: else
8: compute points in Vcellpi (P) closest to SEC(P). {Voronoi cell of pi

inside circle}
9: if exactly one candidate exists then

10: move toward that point
11: else
12: select the coordinate with the greatest x-coordinate and then y-

coordinate. {several candidates exists}
13: move toward that point
14: end if
15: end if
16: end if
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Figure 3.1: Restriction 1: The movement of r5 is constrained by the interior
of its voronoi cell

Figure 3.2: Restriction 2: The movement of r5 is constrained by smallest
enclosing circle

Figure 3.3: Restriction 1-4: r1, r2, r6 move on the boundary of the enclosing
circle (Restriction 3-4): r3, r4, r5 move in interior
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3.3 Uniform Transformation

The “Algorithm 2” given by A. Konagaya [7] converges to the uniform trans-

formation. It may or may not ever.

Algorithm 2 Convergence towards a uniform transformation

function Auniform(P, pi)

Require: Assume all robots are on the boundary of SEC(P)
1: prev(pi) ← direct neighbour of pi counterclockwise
2: next(pi) ← direct neighbour of pi clockwise
3: midpoint(pi) ← midpoint of arc prev(pi) & next(pi)
4: target ← midpoint of midpoint(pi)
5: move toward target.

Now the algorithms presented have been proposed for some special situ-

ations.

3.3.1 Situation 1

Assumming all the robots form a circle and suddenly exactly one of the robots

stops moving (maybe it is faulty or intentional). Now, the given algorithm in

“Algorithm 3” deterministically solves the uniform transformation problem

in a finite number of cycles.

Proof. “Algorithm 3” deterministically solves the problem of uniform trans-

formation. Consider the robot just prev of the “immobile” robot, say rf .

rf robot will deterministically position itself in a finite number of cycles in

its prescribed position as its neighbour robot is not moving, thus, fixing its

target position for all the cycles. Now this rf robot also becomes “immobile”

as it is on its target position. Recursively considering the robot rf−1, this will

also deteministically position itself on the target position in a finite number

of cycles. Similarly, all robots will move to their target position and will form
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Algorithm 3 uniform transformation with one faulty robot

function Auniform(P, pi)

Require: Assume all robots are on the boundary of SEC(P)
Ensure: One of the robots is faulty (cannot move)
1: if ri is falty then
2: This robot cannot move.
3: else
4: next(ri) ← direct neighbour of ri clockwise
5: n ← total number of robots
6: requiredAngularDiff ← 2*π/n
7: angularDiff ← (arc between next(ri))/(radius of circle)
8: if requiredAngularDiff > angularDiff then
9: target ← (requiredAngularDiff - angularDiff)*(radius of circle) in

anticlockwise direction
10: move toward target.
11: else
12: if requiredAngularDiff < angularDiff then
13: target ← (angularDiff - requiredAngularDiff)*(radius of circle) in

clockwise direction
14: move toward target
15: else
16: target ← currentPosition
17: stand still.
18: end if
19: end if
20: end if
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Figure 3.4: Initial states of all the robots. The faulty robots is shown in blue
color (although it is anonymous in theory)

a regular-polygon solving the uniform transformation problem.

This algorithm was simulated, and as derived, the movement of the robots

stopped after a finite number of cycles forming an uniform circle/regular

polygon. This result is shown in the pictures.

3.3.2 Situation 2

Assumming all the robots form a circle and we restrict the movement in only

counterclockwise direction. Then “Algorithm 4” deterministically solves the
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Figure 3.5: Final states of all the robots. The faulty robots is shown in blue
color (although it is anonymous in theory). As shown, after a finite number
of iterations, they form a regular polygon.
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problem of uniform transformation.

Algorithm 4 uniform transformation with movement restriction in one di-
rection
function Auniform(P, pi)

Require: Assume all robots are on the boundary of SEC(P)
Ensure: Robots can only move counterclockwise
1: prev(pi) ← direct neighbour of pi counterclockwise
2: next(pi) ← direct neighbour of pi clockwise
3: midpoint(pi) ← midpoint of arc prev(pi) & next(pi)
4: target ← midpoint of midpoint(pi)
5: if target in counterclockwise direction then
6: Move the robot ri to target
7: else
8: stand still.
9: end if

“Algorithm 4” deterministically solves the problem of uniform transfor-

mation. No rigorous proof hasn been worked out. But, this algorithm was

simulated, and as in the diagrams shown, the movement of the robots stopped

after a finite number of cycles forming an uniform circle/regular polygon.

3.4 Combining the two parts

Now the sub-parts constructed can be joined to make one solution to a bigger

problem which is Uniform Circle Formation. This is shown in “Algorithm 5”.

When any robot is inside the circle, we run the algorithm for circle formation.

If all the robots are on the boundary of the smallest enclosed circle, it will

run one of the algorithms from 2, 3, 4 depending on the situation.
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Figure 3.6: Initial states of all the robots. Algorithm 4.

Algorithm 5 uniform circle formation (Combining the parts)

function Auniform−circle(P, pi)

1: if pi is in the interior of SEC(P) then
2: run Algorithm 1 {Acircle}(P, pi)
3: else
4: Algorithm 2, 3, 4 depending on the situation {All robots are on

SEC(P)} {Auniform}(P, pi)
5: end if
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Figure 3.7: Final states of all the robots. Algorithm 4. They form a regular
polygon.
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Chapter 4

Minimum Perimeter Circle

Formation

4.1 Problem Definition

In this chapter we address the problem of minimum perimeter circle forma-

tion. The problem statement is as follows:

Definition 4.1.1. Minimum Perimeter Circle Formation . Given a

group of n fat robots {r1, r2, ....., rn} with distinct positions and located ar-

bitrarily on a plane, eventually arrange them at a boundary of a circle such

that the perimeter is minimum and the final configuration is connected and

terminal.

We will solve the problem using fat robots (closed unit-discs).

4.2 Underlying Model

As we know the number of robots are n, thus, the radius required to acco-

modate all the robots is: Rad = n/π
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We use the basic structure of weak model of robots and add some extra

features which extend the model towards reality. Let R = {r1, r2, ..., rn} be

a set of fat robots. A robot is represented by its center, i.e., by ri we mean

a robot whose center is ci . The set of robots R deployed on the 2-D plane

is described as follows:

• A robot can see up to a infinite distance around itself on the 2D plane.

• Robots are transparent, that is, every robot can see through every other

robot. Thus, every robots is visible.

• The robots are autonomous.

• The robots do not have a common origin, no common x-y axis, but

common sense of direction (chirality).

• Robots have a common unit of distance (as all robots are unit-discs,

this can easily be assumed)

• Robots are anonymous and homogeneous in the sense that they are

unable to uniquely identify themselves, neither with a unique identi-

fication number nor with some external distinctive mark (e.g. color,

flag).

• The robots are oblivious in the sense that they can not remember any

past action.

• A robot is a fat robot and represented as a unit disc.

• CORDA model is assumed for the robots. Under this model a robot

in motion is visible to other robots.
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• Robots can not communicate explicitly. The robots communicate only

by means of observing other robots within its visibility range.

• Each robot executes a cycle of look - compute - move synchronously.

• One robot acts as an obstacle to another robot, that is, two robots

cannot share more than one point on the 2D plane (The point is shared

only when one robot “touches” another).

• As it is a synchronous model, at every step, robot can move atmost ε

distance.

4.3 Overview

Let R be a set of stationary transparent fat robots, under the computation

model described above. The objective is to move the robots in R in order to

form a circle of radius Rad. First, the robots compute the Smallest Enclosing

Circle (SEC) with R. Let P be the center of the SEC. Let C(1) be the set

of robots nearest to P . We call this set, the robots at 1st level of distances.

Similarly C(2) is the set of robots 2nd nearest to P . We call this set, the

robots at 2nd level of distances. Let there be m such levels of distances.

The robots which are at ith level of distance from P constitute the set C(i)

(1 ≤ i ≤ m). The robots in C(m) are actually on the SEC. We can visualize

the configuration of robots as m concentric circles whose center is P . If

any robot is at the center then it is considered to be on a circle with radius

zero and denoted by C(0). This set of circles is arranged according to their

distances from P as C = {C(0), C(1), C(2), ..., C(m)}. Since the SEC is

unique, the set C is also unambiguous. Each robot computes this sequence

C. Now let us assume another concentric circle with radius Rad and call it
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C(Rad) which is actually the circle where the robots will lie in the terminal

configuration.

We first form a circle by synchronous transparent fat robots. Then, when

the circle is complete, the robots move in such a way that the circle starts

to converge. When the robots form one big connected component with the

least perimeter of the underlying circle, we say that the robots have deter-

ministically solved the minimum perimeter circle formation problem. In the

next section, you’ll find all the algorithms to deterministically solve the above

problem. Every robot calls method MinimumPerimeterCircleFormation(r)

to form a minimum perimeter circle.

Let us introduce some notations and definition which will be used to

explain the algorithm.

• |A| : Number of elements in set A.

• Dist(A,B): The euclidean distance between two points A and B.

• Tr : Computed destination for r.

• LN(r, i): ith left (clockwise w.r.t. r) neighbor of the robot r on the

circumference of the circle on which r lies.

• RN(r, i): ith right (anti clockwise w.r.t. r) neighbor of the robot r on

the circumference of the circle on which r lies.

• Poly(C(k)): The convex polygon formed by the robots on the circum-

ference of the circle C(k) ∈ C.

• Projpt(r, C(k)): The projected (radially inward or outward) point of

the robot position r on the concentric circle C(k) ∈ C.
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• Maxe(Poly(C(k))) : The unique longest edge of Poly(C(k)). (If there

are more than one longest edge, then the next maximum length is found

until we get a single edge of maximum length.) If R is not in symmetric

configuration, then a longest unique edge is positively found.

• Component: set of robots touching each other. There can be multiple

components in a configuration.

• CurrentSEC: The smallest enclosing circle.

• RequiredSEC: Circle with radius Rad.

• CurrentRadius: Radius of currentSEC.

Definition 4.3.1. Free Robot . Let r be a robot on the circle C(mi) (1 ≤

i ≤ m1). r is projected (radially outward) on the circle C(m). Let r′ be

the projected point. Let us denote the rectangular area with length l =

Dist(r, r′) and width 2 as rect(rr′). r is said to be a free robot if rect(rr′)

does not contain any part of other robot. A robot which is not free is called

locked robot.

4.4 Algorithm

Algorithm 6 SECexpansion(r) - Expands the current SEC to make space
for all the robots and also helps to get out of lock configuration.

1: if r ∈ C(m) then
2: Move r ε distance radially outward from the center of current SEC.
3: else
4: r does not move.
5: end if
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Algorithm 7 CheckLock(r, Tr) - Checks if moving the robot r to position
Tr will lead to a lock configuration or not.

1: if (m == 2)
∧

(vacant points on C(m) == Robots on C(m − 1))
∧

(∀ri ∈ C(m − 1), ri is not a free robot)
∧

(r at Tr forms a symmetric
configuration) then

2: return true;
3: else
4: return false;
5: end if
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Algorithm 8 ComputeDestination(r) - Computes the destination on the
SEC for robots belonging to C(m− 1) for the initial formation of circle.

Require: r ∈ C(m− 1)
1: FoundDestination ← false
2: if (FoundDestination == false)

∨
((m == 1)

∧
(|C(0)| = 1)) then

3: Compute Poly(C(m)); e ← Maxe(Poly(C(m))); l ← bisector of e;
4: u ← intersection point of l and C(m) at that side of e where r lies;
5: Tr ← u
6: FoundDestination ← true
7: else
8: if Projpt(r, C(m)) is a vacant point then
9: Tr ← Projpt(r, C(m)); FoundDestination ← true

10: else
11: if (m == 2)

∧
(|C(1)| == 1)

∧
(Projpt′(r, C(m)) is a vacant point)

then
12: Tr ← Projpt′(r, C(m)); FoundDestination ← true;
{}Projpt′(r, C(m)) is the diametrically opposite point to
Projpt(r, C(m))

13: end if
14: rpt ← Projpt(r, C(m)); d ← Projpt′(r, C(m));
15: if FoundDestination == false then
16: i ← 1; R ← RN(rpt, i); L ← LN(rpt, i);
17: while Dist(rpt, R) == Dist(rpt, L) do
18: i++; R ← RN(rpt, i); L ← LN(rpt, i);
19: end while
20: if Dist(rpt, R) > Dist(rpt, L) then
21: Tr ← the first vacant position at right side (anti-clockwise) of

rpt between rpt and d; FoundDestination ← true
22: else
23: Tr ← the first vacant position at left side (clockwise) of rpt

between rpt and d; FoundDestination ← true
24: end if
25: end if
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26: if FoundDestination == false then
27: i ← 1; R ← RN(r, i); L ← LN(r, i);
28: while Dist(r, R) == Dist(r, L) do
29: i++; R ← RN(r, i); L ← LN(r, i);
30: end while
31: if Dist(r, R) > Dist(r, L) then
32: Tr ← the first vacant position at right side (anti-clockwise) of

rpt between rpt and d; FoundDestination ← true
33: else
34: Tr ← the first vacant position at left side (clockwise) of rpt

between rpt and d; FoundDestination ← true
35: end if
36: end if
37: if FoundDestination == false then
38: k ← 1;
39: while (FoundDestination == false)

∧
(k < m) do

40: r′pt ← Projpt(r, C(m − k));i ← 2; R ← RN(r′pt, i); L ←
LN(r′pt, i);

41: while Dist(r′pt, R) == Dist(r′pt, L) do
42: i++; R ← RN(r′pt, i); L ← LN(r′pt, i);
43: end while
44: if Dist(r′pt, R) > Dist(r′pt, L) then
45: Tr ← the first vacant position at right side (anti-clockwise)

of rpt between rpt and d; FoundDestination ← true
46: else
47: Tr ← the first vacant position at left side (clockwise) of rpt

between rpt and d; FoundDestination ← true
48: end if
49: if FoundDestination == false then
50: k++;
51: end if
52: end while
53: end if
54: if FoundDestination == false then
55: Draw tangent τ at r;
56: τ intersects C(m) at point Lp and Rp;
57: Tr ← Lp; or Tr ← Rp;
58: end if
59: end if
60: end if
61: return Tr;
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Algorithm 9 Converge(r) - After a circle is formed, this algorithm converges
the robot to minimum perimeter circle.

Require: All robots are on SEC
1: if CurrentSEC == RequiredSEC then
2: Do nothing; return;
3: else
4: if Any robot is tangent to any other robot then
5: if robot r is the rightmost(anti-clockwise) of the component it be-

longs to then
6: d ← ((2 ∗ π ∗ CurrentRadius)− (2 ∗ n))/n
7: Tr ← Point on SEC at distance d from r’s right neihbour.
8: Move r to Tr (Only atmost ε distance will covered on the SEC)
9: end if

10: else
11: d ← maximum distance all robots can move radially inwards until

any one robot becomes tangent to another robot.
12: dfinal = minimum(ε, d);
13: Move distance dfinal radially inwards.
14: end if
15: end if

38



Algorithm 10 MinimumPerimeterCircleFormation(r) - This is the main
method called by every robot in it’s computing phase which in turn uses the
above algorithms to perform it’s task.

1: if All Robots on SEC then
2: Call Converge(r);
3: else
4: if CurrentSEC < RequiredSEC then
5: Call SECexpansion(r);
6: else
7: if r ∈ C(m− 1) then
8: Tr ← ComputeDestination(r)
9: if (CheckLock(r, Tr))

∨
(Line joining r and Tr intersect C(m−1)

or any other robot) then
10: Call SECexpansion(r);
11: else
12: r moves to Tr
13: end if
14: else
15: r does not do anything.
16: end if
17: end if
18: end if
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4.5 Correctness

We’ll prove that every algorithm achieves it task and finally the method

MinimumPerimeterCircleFormation(r) forms the minimum perimeter circle.

Lemma 4.5.1. The radius of CurrentSEC is never decreased by the execution

of SECexpansion(r). Also, it will not infinitely expand the SEC.

Proof. According to the algorithm SECexpansion(r), a robot either moves

away from the center of the currentSEC or stay still. Hence, the radius of

the circle either increases or remains same. Also, it is only called a limited

number of times as the condition to call the method is:

• Radius of current SEC is smaller than the required SEC. Thus, as soon

as the current SEC is greater than the required SEC, the method will

not be called anymore.

• There is a lock configuration, i.e., the inner robots may not be able to

find a destination on the SECbecause of limited space and symmetry.

When the SEC is big enough, the condition that robots on inner circle is

equal to the vacant points on the SEC will not be true and the method

will not be called anymore.

Thus, the method SECexpansion(r) is callled only a limited number of times

and will never lead to infinite expansion of SEC.

Definition 4.5.2. Eligible Robot [5]. A robot is called an eligible robot, if

it finds a unique destination (using ComputeDestination(r)) on the circum-

ference of SEC.

Lemma 4.5.3. ComputeDestination(r) finds a unique destination for every

robot.
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Proof. Every robot in R is an eligible robot as the circumference of SEC will

be greater than the space required to accomodate all the robots.

Lemma 4.5.4. Converge(r) reduces the radius of the current SEC and ter-

minates after a finite number of steps.

Proof. converge(r) moves the robots radially inwards. Also, all the robots

move at the same time and the same distance because of the synchronization

assumption and the fact that all the robots are on the SEC. Thus, the radius

of the current SEC decreases with execution of converge(r). As after a point

of time when we reach the RequiredSEC, converge(r) will not be able to

move the robots inside anymore and thus will terminate.

Theorem 4.5.5. MinimumPerimeterCircleFormation(r) forms a circle with

minimum perimeter after a finite time.

Proof. According to the lemmas above 4.5.1, 4.5.3 and 4.5.4, every robot finds

a place on the SEC in a finite number of steps and thus, all the fat-robots form

a circle. When the circle is formed, MinimumPerimeterCircleFormation(r)

in-turn calls the converge(r) method which converges the circle to required-

SEC in finite number of steps. Thus, a circle with minimum perimeter is

formed.
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Chapter 5

Conclusion

Results of the previous semester can be summarized as follows:

• Results from references were collected about the possibilities and im-

possibilities of the solutions for sub problems in pattern formation

by autonomous, anonymous, oblivious/non-oblivious and homogeneous

robots.

• Uniform Circle Formation problem can be sub-divided into two parts(Circle

Formation and Uniform Transformation problems) and they can be

solved separately to get the solution to the bigger problem.

• Circle Formation Problem can be solved for n ≥ 3 robots in a finite

number of cycles with oblivious robots.

• Currently, no deterministic algorithm for oblivious, anonymous mobile

robots exist to solve the Uniform transformation problem which termi-

nates in a finite number of cycles.

• Taking a stronger assumption on the model makes the Uniform trans-

formation problem solvable by oblivious robots in a finite number of
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cycles.

• First assumption : Exactly one robot on the circle is “immobile”.

Now, the Uniform transformation problem is solvable by oblivious robots

in a finite number of cycles by the algorithm Algorithm 3 for n ≥ 2.

• Second assumption : Robots can only move in one direction (anti-

clockwise). Again, the Uniform transformation problem is solvable by

oblivious robots in a finite number of cycles by the algorithm Algorithm

3 for n ≥ 3.

The project was further extended to fat-robots trying to solve the mini-

mum perimeter circle formation problem. A determinitic solution was given

for the problem in a synchronized CORDA model with transparent fat-robots

having an additional assumption of chirality.
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