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ABSTRACT

The main aim of the project is to propose and test by simulations a dis-

tributed algorithm by which a set of autonomous, anonymous mobile robots

roaming on a plane move to form a uniform circle. The robots are anonymous

in the sense that they all execute the same algorithm and they cannot be

distinguished by their appearances. Two algorithms proposed tries to solve

the uniformity problem presuming that the robots already lie on a circle

(non-uniform) and have a common sense of rotational orientation.

The distributed coordination and control of a set of autonomous mobile

robots is a problem widely studied in a variety of fields, such as engineerig,

artificial intelligence, artificial life, robotics. The problem is practically im-

portant, because, if the robots can form a given pattern, they can agree on

their respective roles in any coordinated actions.
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1
Introduction

Suppose that a schoolteacher wants her 100 children in the playground to

form a circle so that, for instance, they can play a game. She might draw a

circle on the ground as a guideline or even give each child a specific position

to move to. What if the teacher does not provide such assistance? Even

without such assistance, the children may still be able to form a sufficiently

good approximation of a circle if each of them moves adaptively based on

the movement of other children and knowledge of the shape of a circle. If

successful, this method can be called a distributed solution to the circle for-

mation problem for children. A similar distributed approach can be used for
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controlling a group of multiple mobile robots.

An interesting trend has been observed in robotic research, both from

engineering and behavioural viewpoints. They are readily moving away

from the design and deployment of few, rather complex, usually expensive,

application-specific robots. In fact, within this trend, the interest has shifted

towards the design and use of a large number of “generic” robots which are

very simple, with very limited capabilities, and thus relatively inexpensive

but capable of performing (together) rather complex tasks. The main idea is

to let each robot execute a simple algorithm and plan its motion adaptively

based on the observed movement of other robots, so that the robots as a

group will achieve the given goal.

The advantages of such an approach are clear and many. They include:

reduced costs (due to simpler engineering and construction costs, faster de-

velopment and deployment time, etc); ease of system expandability (just add

a few more robots) which in turns allows for incremental and on-demand de-

ployment (use only as few robots as you need and when you need them); sim-

ple and affordable fault-tolerance capabilities (replace just the faulty robots);

re-usability of the robots in different applications (reprogram the system to

perform a different task).

1.1 Model and Problem

The robots are modelled as points a 2D plane. They are “weak” robots:

homogeneous (they all follow the same set of rules), autonomous (there is no

a priori central authority, and each robots computing capabilities are inde-

pendent from the others), asynchronous (there is no central clock, no a priori

synchronization, no a priori bounds on processing or motorial speed), mobile
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(robots are allowed to move on a plane), anonymous (they are a priori indis-

tinguishable), oblivious (they do not explicitly remember the past). Besides,

robots execute the same deterministic algorithm, are unable to communicate

directly, and can only interact by observing each others’ position.

With this weak model, we address the problem of forming an uniform cir-

cle by a group of mobile robots, for which two algorithms are proposed. The

problem in particular has interesting applications. For instance, consider the

context of space exploration and the initial preparation of a zone. A group

of robots could be sent and after landing at random locations, would self-

organize to form the initial infrastructure for later expeditions. Also, pattern

formation is the first step towards flocking, i.e., allowing a group of robots

to move in formation. Moreover, the formation of geometrical patterns and

flocking are both useful in themselves for the self-positioning of mobile base

stations in a mobile ad-hoc network and self-deployment of sensor rings.

Forming of an uniform circle by a group of autonomous robots can be

divided into two parts:

1. Forming a circle, possibly an non-uniform one. (Circle Formation Prob-

lem)

2. Positioning the robots evenly on the boundary, i.e., forming a regular

polygon. (Uniformity Transformation)

The Circle Formation Problem by a set of autonomous, anonymous, obliv-

ious robots has many proposed solutions whereby robots deterministically

form a circle. These solutions will be discussed in the next section of liter-

ature review. Unfortunately, the second part of the problem only has con-

verging solutions. Although, deterministic solutions have been proposed, but

they do not work for n(number of robots) = 4, 6, 8. Consequently, the two
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algorithms presented here will try to solve the uniformity problem. Both the

algorithm assume that all the robots have a common set of roational orienta-

tion. Former of the two algorithms presumes that one of the robot is faulty

and cannot move from it’s position after forming the circle. Latter of the two

algorithms restricts the movement of all the robots only in the anti-clockwise

direction. Both of them determinitically position all the robots evenly on the

boundary of the circle forming a regular polygon and ultimately solving the

uniformity problem.

The algorithms have not been rigorously proven, but an animated sim-

ulation in webGL of the working of the algorithm is constructed to test the

hypothetical results. The results and images from the simulation are added

in the subsequent section.

1.2 Definitions

We study the problem of coordinating a set of autonomous, mobile robots

in the plane. The coordination mechanism must be totally decentralized,

without any central control. The robots are anonymous, in the sense that

a robot does not have an identity that it can use in a computation, and all

robots execute the exact same algorithm. Each robot has its own, local view

of the world. This view includes a local Cartesian coordinate system with

origin, unit of length, and the directions of two coordinate axes, identified

as x axis and y axis, together with their orientations, identified as the pos-

itive sides of the axes. The robots do not have a common understanding

of the handedness (chirality) of the coordinate system that allows them to

consistently infer the orientation of the y axis once the orientation of the x

axis is given; instead, knowing North does not distinguish East from West.
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The robots observe the environment and move; this is their only means of

communication and of expressing a decision that they have taken. The only

thing that a robot can do is make a step, where a step is a sequence of three

actions. First, the robot observes the positions of all other robots with re-

spect to its local coordinate system. Each robot is viewed as a point, and

therefore the observation returns a set of points to the observing robot. The

robot cannot distinguish between its fellow robots; they all look identical.

Second, the robot performs an arbitrary local computation according to its

algorithm, based only on the common knowledge of the world (assumed e.g.

to be stored in read-only-memory and to be read off from sensors of the

environment) and the observed set of points. Since the robot does not mem-

orize anything about the past, we call it oblivious. For simplicity, we assume

that the algorithm is deterministic, but it will be obvious that all of our re-

sults hold for nondeterministic algorithms as well (randomization, however,

makes things different). Third, as a result of the computation, the robot

either stands still, or it moves (along any curve it likes). The movement is

confined to some (potentially small) unpredictable, nonzero amount. Hence,

the robot can only go towards its goal along a curve, but it cannot know a

priori how far it will come in the current step. While it is on its continuous

move, a robot may be seen an arbitrary number of times by other robots,

even within one of its steps.

Let π be a predicate describing a geometric pattern, such as a point,

a regular polygon, a line segment, etc. On the one hand, we say that an

algorithm A solves the convergence problem for π if the robots distribu-

tion converges to one that satisfies π, regardless of the number n of robots,

their initial distribution, and the timing with which they become active. On

the other hand, we say that A solves the formation problem for π if the
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robots eventually reach a distribution that satisfies π in a finite number of

steps, regardless of n, their initial distribution, and the timing with which

they become active.

The robots are asynchronous : the amount of time spent in observation, in

computation, in movement, and in action is negligible but otherwise unpre-

dictable. In particular, the robots do not (need to) have a common notion of

time. Each robot makes steps at unpredictable time instants. The (global)

time that passes between two successive steps of the same robot is finite;

that is, any desired finite number of steps could have been made by any

robot after some finite amount of time. In addition, we do not make any

timing assumptions within a step: The time that passes after the robot has

observed the positions of all others and before it starts moving is arbitrary,

but finite. That is, the actual move of a robot may be based on a situation

that lies arbitrarily far in the past, and therefore it may be totally different

from the current situation. We feel that this assumption of asynchronicity

within a step is important in a totally asynchronous environment, since we

want to give each robot enough time to perform its local computation.

The robots are able to sense the complete plane: we say they have Un-

limited Visibility. If they have limited visibility, then a visibiity graph for

the positions of the robots is defined as:

Definition 1.2.1. Visibility Graph. The visibility graph G = (N,E) is a

graph whose node set N is the set of the input robots and (ri, rj) ∈ E iff

rj ∈ Ci and ri ∈ Cj, where ri, rj, Ci, Cj are the two and robots and their

visibility area from their initial positions.

The robots to be able to detect multiplicity (i.e. whether there is more

than one robot on any of the observed points, included the position where

the observing robot is.

6



1.2.1 Computational Cycle

The robots execute the same deterministic algorithm, which takes as input

the observed positions of the robots within the visibility radius, and returns

a destination point towards which the executing robot moves. A robot is

initially in a waiting state (Wait); asynchronously and independently from

the other robots, it observes the environment in its area of visibility (Look);

it calculates its destination point based only on the observed locations of the

robots in its (Compute); it then moves towards that point (Move); after the

move it goes back to a waiting state. The sequence: Wait Look Compute

Move will be called a computation cycle (or briefly cycle) of a robot. The

operations performed by the robots in each state will be now described in

more details.

Wait The robot is idle. A robot cannot stay idle indefinitely unless it is

faulty. At the beginning all the robots are in the Wait state.

Look The robot observes the world by activating its sensors which will re-

turn a snapshot of the positions of all other robots with respect to its

local coordinate system. Each robot is viewed as a point, hence its

position in the plane is given by its coordinates, and the result of the

snapshot is just a set of coordinates in its local coordinate system: this

set forms the view of the world of r . More formally, the view of the

world of r at time t is defined as the last snapshot taken at a time

smaller than or equal to t.

Compute The robot performs a local computation according to its deter-

ministic, oblivious algorithm A. The result of the computation is a

destination point; if this point is the current location, the robot stays

still (null movement).
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Move If the point computed in the previous state is the current location,

the robot does not move; otherwise it moves towards the destination

point. The robot moves by an unpredictable amount of space, which

is assumed neither infinite, nor infinitesimally small. Hence, the robot

can only go towards its goal, but it cannot predict how far it will go

in the current cycle, because it can stop anytime during its movement;

that is, a robot can stop before reaching its destination point.

1.2.2 Time Settings

Asynchronous. In this time setting, the global time that passes between two

successive states of the same robot is finite but unpredictable. In addition,

no time assumption within a state is made. This implies that the time that

passes after the robot starts observing the positions of all others and before

it starts moving is arbitrary, but finite. That is, the actual move of a robot

may be based on a situation that was observed arbitrarily far in the past,

and therefore it may be totally inaccurate in the current situation.

The system resulting from this time setting is fully asynchronous ; in

particular, the amount of time spent in Wait, Look, Compute, Move, and

idle states is finite but otherwise unpredictable. As a result, the robots do

not have a common notion of time, robots can be seen while moving, and

computations can be made based on obsolete observations. This time setting

is adopted in [8]; we will refer to it as Async. If the robots move according

to this time setting, we say that they move according to an asynchronous

activation schedule.

Atomic. In contrast, if the robots execute their activities in an atomic and

instantaneous fashion, we say that the robots are atomically synchronized,

and that they move according to an atomic activation schedule. It is referred
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to as Atom

In an atomic activation schedule, at each time instant t, every robot

ri is either active or inactive. At least one robot is active at every time

instant, and every robot becomes active at infinitely many unpredictable

time instants. For any t ≥ 0, if ri is inactive, then pi (t + 1) = pi (t);

otherwise pi (t + 1) = p, where pi (t) denotes the position of robot ri at time

instant t, and p is the point returned by A.

1.2.3 Problem Definition

The problem addressed is the formation of a circle by a set of autonomous

mobile robots. More rigorously the problem is defined as follows.

Definition 1.2.2. Uniform Circle Formation. Given a group of n robots

r1, r2, ....., rn with distinct positions and located arbitrarily on a plane on the

boundary of some non-degenrate circle (i.e., with finite radius greater than

zero), eventually arrange them at regular intervals of the boundary of the

circle.

A weaker problem is also considered as a part of the literature review

which requires the robots to form a circle, but not necessarily be at regular

intervals. This weaker problem is expressed more rigorously as follows.

Definition 1.2.3. Circle Formation. Given a group of n robots r1, r2, ....., rn

with distinct positions and located arbitrarily on the plane, arrange them to

eventually form a non-degenrate circle.

Definition 1.2.4. Gathering Problem. Given a group of n robots r1, r2, ....., rn

with distinct positions and located arbitrarily on the plane, eventually gather

at one point.

9



Definition 1.2.5. Pattern Formation Problem. Given a group of n robots

r1, r2, ....., rn located arbitrarily on the plane are said to form a given pattern,

if, eventually the positions of the robots coincide, in everybody’s local view,

with the points of the pattern.

In terms of reaching agreement, Circle Formation provides an origin and

a unit distance.

1.3 Future Prospects

The present work can be extended in the followinf directions:

• The assumptions taken with the algorithm can be relaxed to make

weaker models and solve Uniform transformation problem in finite time.

• Different settings of obliviousness can be tested. For instance, a totally

non-oblivious model, i.e., with unlimited amount of memory. Alterna-

tively, equipping the robot with bounded memory (semi-obliviousness).

Or the weakest model with no memory of past (oblivious).

• Weaker models can be constructed wherein the three actions (look-

compute-move) may not be atomic.

• Limitless region of vision can be limited.

• Reducing the complexity of the algorithm.

• Instead of forming regular patterns, forming irregular/arbitrary pat-

terns.

• Taking into consideration the practical issues. The algorithm presented

here is more theoritical rather than practical. Infinite precision, unlim-
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ited visibility, point robots, are impractical assumptions. Engineering

issues is an important topic.

• fault tolerance. oblivious algorithms are by definition self-stabilizing

but non-oblivious are not. Also, the algorithm should also work when

the number of robots changes dynamically a finite number of time.
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2
Literature Review

A vast amount of researches exist in the context of cooperative mobile robotics.

Most of it uses diverse heuristics such as free market optimization [4] or swarm

intelligence [7]. However, only few studies take the problem from a compu-

tational standpoint. This can be partly explained by the difficulty of the

task, and the fact that heuristics are perceived as a way to circumvent that

difficulty. Debest [2] briefly discusses the formation of a circle by a group

of mobile robots as an illustration of self-stabilizing distributed algorithms.

He discusses the problem, but does not really provide an algorithm. Sugi-

hara and Suzuki [12] propose several algorithms for the formation of various
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geometrical patterns. They propose an algorithm for the formation of an

approximation of a circle, based on heuristics. In some cases, the shape ob-

tained with their algorithm is a Reuleaux triangle (a hybrid shape, between

a triangle and a circle) rather than a circle. Suzuki and Yamashita [13] pro-

pose a non-oblivious algorithm for the formation of a regular polygon. In

other words, the robots eventually reach a configuration in which they are

arranged at regular intervals on the boundary of a circle. To achieve this,

they must however require the robots to be able to remember all past ac-

tions. Under the same model, Ando et al. [6] propose an algorithm by which

robots with a limited range of vision gather to a point. Flocchini et al. [9]

give an algorithm to solve the same problem in a slightly different model;

dropping the assumption of instantaneous computation and movement, but

assuming a common sense of direction as given by compasses. Flocchini et

al. [8] study the solvability of the formation of arbitrary patterns, depending

on how much common knowledge the robots initially have about a global

coordinate system. Uny Cao et al. [14] provide a wide survey of researches

in cooperative mobile robotics, and observe that only few researches take the

problem from a computational point of view. This observation is later echoed

by Flocchini et al. [9]. The subsequent section describes the assumptions

and results collected from various research papers.

2.1 Gathering Problem

From the works of G. Prencipe [10], given n robots with the following capa-

bilities cannot solve the gathering problem:

• Autonomous

• Anonymous
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• Homogeneous

• Oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

• Do not detect multiplicity

• Initial positions are all distinct

Under the above assumptions G. Prencipe [10] says that,

Theorem 2.1.1. In both the asynchronous and the atomic time setting, there

exists no deterministic oblivious algorithm that solves the gathering problem

in a finite number of cycles, hence in finite time, for a set of n ≥ 2 robots.

In another work by M. Yamashita [13], after taking an extra assumption

of multiplicity detection, they proved that gathering problem is solvable. The

assumptions taken by M. Yamashita [13] are as follows:

• Autonomous

• Anonymous

• Homogeneous

• Oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty
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• Dimensionless robots (point robots)

• Detect multiplicity

• Initial positions are all distinct

Under the above assumptions, M. Yamashita [13] quotes,

Theorem 2.1.2. There exists an oblivious algorithm for solving gathering

problem in a finite number of steps for n ≥ 3.

Proof. It suffices to give an oblivious algorithm A that solves the gathering

problem in a finite number of cycles. The idea is the following. Starting from

distinct initial positions, we move the robots in such a way that eventually

there will be exactly one position, say, p, that two or more robots occupy.

Once such a distribution is reached, all robots that are not located at p move

toward p in such a way that no two robots will occupy the same position

at any location other than p. Then all robots eventually occupy p, solving

gathering problem in finite time.

Such a distribution can be obtained if each robot, each time it becomes

active, determines which of the following cases applies and moves to a new

position (or remains stationary) as specified. Since a robots action is based

only on the current robot distribution, this strategy can be implemented as

an oblivious algorithm.

Case 1. n = 3 p1, p2 and p3 denote the positions of the three robots

1. If n = 3 and p1, p2, p3 are collinear with p2 in the middle, then the

robots at p1 and p3 move toward p2 while the robot at p2 remains

stationary. Then eventually two robots occupy p2.
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2. If n = 3 and p1, p2 and p3 form an isosceles triangle with ‖p1p2‖ =

‖p1p3‖ 6= ‖p2p3‖, then the robot at p1 moves toward the foot of the

perpendicular drop from its current position to p2 p3 in such a way

that the robots do not form an equilateral triangle at any time,

while the robots at p2 and p3 remain stationary. Then eventually

the robots become collinear and the problem is reduced to part 1.

3. If n = 3 and the lengths of the three sides of triangle p1p2p3 are

all different, say, ‖p1p2‖ > ‖p1p3‖ > ‖p2p3‖, then the robot at p3

moves toward the foot of the perpendicular drop from its current

position to p1p2 while the robots at p1 and p2 remain stationary.

Then eventually the robots become collinear and the problem is

reduced to part 1.

4. If n = 3 and p1, p2, p3 form an equilateral triangle, then every

robot moves towards the center of the triangle. Since all robots

can move up to at least a constant distance ε greater than 0 in one

step, if part 4 continues to hold then eventually either the robots

meet at the center, or the triangle they form becomes no longer

equilateral and the problem is reduced to part 2 or part 3.

Case 2. n ≥ 4 Ct denotes the smallest enclosing circle of the robots at time

t

1. If n ≥ 4 and there is exactly one robot r in the interior of Ct,

then r moves toward the position of any one robot, say, r , on

the circumference of Ct while all other robots remain stationary.

Then eventually r and r occupy the same position.

2. If n ≥ 4 and there are two or more robots in the interior of Ct , then

these robots move toward the center of Ct while all other robots
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remain stationary (so that the center of Ct remains unchanged).

Then eventually at least two robots reach the center.

3. If n ≥ 4 and there are no robots in the interior of Ct , then every

robot moves toward the center of Ct . Since all robots can move up

to at least a constant distance ε greater than 0 in one step, if part

3 continues to hold, then eventually the radius of Ct becomes at

most . Once this happens, then the next time some robot moves,

say, at t’ , either (i) two or more robots occupy the center of Ct or

(ii) there is exactly one robot r at the center of C ′t , and therefore

there is a robot that is not on Ct (and the problem is reduced to

part 1 or part 2) since a cycle passing through r and a point on

Ct intersects with Ct at most at two points.

2.2 Regular Pattern

From the works of M. Yamashita [13], given n robots can solve the pattern

formation problem under the following assumptions:

• Autonomous

• Anonymous

• Homogeneous

• nonoblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty
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• Dimensionless robots (point robots)

• Detect multiplicity

• Initial positions are all distinct

M. Yamashita [13] says that,

Theorem 2.2.1. There exists an algorithm for solving formation problem

for a predicate π iff either π = πpoint or π = πregular

Although, M. Yamashita [13] proves that regular pattern formation is

solvable if the robots are nonoblivious, he poses the same problem by oblivious

robots regardless of initial state as an open problem.

In a research by P. Widmayer [5] some possibility and impossibility results

on pattern formation were given under the following assumptions:

• Autonomous

• Anonymous

• Homogeneous

• oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty

• Dimensionless robots (point robots)

The results can be summarized as:

Theorem 2.2.2. 1. With common knowledge of two axes directions and

orientations, the robots can form an arbitrary given pattern.
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2. With common knowledge on only one axis direction and orientation,

the pattern formation problem is unsolvable when n is even; it can be

solved if n is odd.

3. With common knowledge on only one axis direction, the robots can form

an arbitrary pattern if n is odd.

4. With no common knowledge, the robots cannot form an arbitrary given

pattern.

Theorem 2.2.3. With common knowledge on only one axis direction and

orientation, there exists no deterministic algorithm that allows an even num-

ber of robots to form an asymmetric pattern. Moreover, in this case they can

only form symmetric patterns that have at least one symmetric axis not pass-

ing through a vertex of the input pattern.

Results on limited visibilty were also given in P. Widmayer [5]. These

results can be summarized as:

Lemma 2.2.4. If the visibility graph is disconnected, the pattern formation

problem (or actually any problem) is unsolvable.

Theorem 2.2.5. There exists a deterministic algorithm that let the robots

gather in one point in a finite number of movements, in the limited visibility

setting and assuming common knowledge on direction and orientation of both

axes.
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3
Uniform Circle Formation

Uniform circle Formation problem can be divided into two subparts as fol-

lows:

1. Forming a circle, possibly an non-uniform one. (Circle Formation Prob-

lem)

2. Positioning the robots evenly on the boundary, i.e., forming a regular

polygon. (Uniform Transformation)

The algorithms to solve the above two problems have been given sep-

arately in the upcoming sections. Starting with the definitions and nota-
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tions required, algorithm for circle formation and uniform transformation

are given.

A deterministic algorithm to form a non-uniform circle is provided. Un-

fortunately, the uniform transformation problem is only solved as a “conver-

gence problem”. But, assuming some constraints and power on the robots,

the uniform transformation problem can be solved deterministically in finite

time. These assumptions are:

• Robots have a common sense of “rotational” orientation.

• The two oblivious algorithms presented separately assume the follow-

ing:

1. There is one faulty robot, i.e., a robot which cannot move when

the robots are on the boundary of a circle.

2. Robots can only move in the anti-clockwise direction. (All robots

will move in the same direction as they have a common send of

orientation).

3.1 Definitions and Notations

Some definition and notations used in the presentation of the algorithm.

Definition 3.1.1. Position. Given a robot ri, pi(t) denotes its position at

time t, according to some global x-y coordinate system, and pi(0) is its initial

position. P (t) = pi (t) 1 ≤ i ≤ n denotes the multiset of the positions of

all robots at time t. When this is not ambiguous, we sometimes mention a

robot, implicitly referring to its position rather than the robot itself.

21



Definition 3.1.2. Voronoi Diagram. The Voronoi diagram Voronoi(P)

of a set of points P = p1, p2, ..., pn is a subdivision of the plane into n cells,

one for each point in P. The cells have the property that a point q belongs to

the Voronoi cell of point pi, denoted Vcellpi (P), if and only if, for any other

point pj ∈ P, dist(q, pi ) ¡ dist(q, pj ), where dist(p, q) is the Euclidean

distance between p and q. In particular, the strict inequality means that

points located on the boundary of the Voronoi diagram do not belong to

any Voronoi cell. A Voronoi diagram is for instance depicted on Figure

3.1. Significantly more details about Voronoi diagrams and their principal

applications are surveyed by Aurenhammer [1].

Definition 3.1.3. Smallest enclosing circle. The smallest enclosing

circle of a set of points P is denoted by SEC(P). It can be defined by either

two opposite points, or by at least three points. The smallest enclosing circle

is unique, and can be computed in O(n log n) [11].

3.2 Circle Formation

Assumptions taken:

• Autonomous

• Anonymous

• Homogeneous

• Oblivious

• Asynchronous, Synchoronized

• Unlimited Visibilty
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• Dimensionless robots (point robots)

• multiplicity

• Initial positions are all distinct

In addition to the above assumptions, we impose some restriction on the

movement of the robots to solve the problem. Doing so ensures that (1) no

two robots occupy the same position simultaneously (Restr. 1), and that (2)

the smallest circle enclosing all robots remains invariant (Restr. 24). The

restrictions are (they are also shown as figures):

1. A robot always moves toward a point that is inside its Voronoi cell.

2. No robot ever moves beyond the boundary of the smallest circle enclos-

ing all robots.

3. All robots located on the boundary of the smallest enclosing circle

remain on that boundary.

4. Robots located on the circumference of the smallest enclosing circle

do not move unless there are at least three such robots with distinct

positions.

“Algorithm 1” given by A. Konagaya [3] for circle formation. The given

oblivious algorithm deterministically solves the circle formation problem in

a finite number of cycles.

3.3 Uniform Transformation

The “Algorithm 2” given by A. Konagaya [3] converges to the uniform trans-

formation. It may or may not ever.
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Figure 3.1: R
estriction 1: The movement of r5 is constrained by the interior of its

voronoi cell

Figure 3.2: R
estriction 2: The movement of r5 is constrained by smallest enclosing circle

Figure 3.3: R
estriction 1-4: r1, r2, r6 move on the boundary of the enclosing circle

(Restriction 3-4): r3, r4, r5 move in interior
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Algorithm 1 Formation of an (arbitrary) circle (code executed by robot ri)

function Acircle(P, pi)

1: if pi ∈ SEC(P) then
{ri already on boundary.}
stay still

2: else
3: if Vcellpi (P)

⋂
SEC(P) 6= Φ then

4: target ← Vcellpi (P)
⋃

SEC(P)
⋃

Voronoi(P - {pi})
move to target

5: else
{Voronoi cell of pi inside circle}
compute points in Vcellpi (P) closest to SEC(P).
if exactly one candidate exists then move toward that point

6:7: else
several candidates exists select the coordinate with the greatest
x-coordinate and then y-coordinate. move toward that point

8: end if
9: end if
10: end if

Algorithm 2 Convergence towards a uniform transformation

function Auniform(P, pi)

Require: Assume all robots are on the boundary of SEC(P)
1: prev(pi) ← direct neighbour of pi counterclockwise
2: next(pi) ← direct neighbour of pi clockwise
3: midpoint(pi) ← midpoint of arc prev(pi) & next(pi)
4: target ← midpoint of midpoint(pi) move toward target.
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Now the algorithms presented have been proposed for some special situ-

ations.

3.3.1 Situation 1

Assumming all the robots form a circle and suddenly exactly one of the robots

stops moving (maybe it is faulty or intentional). Now, the given algorithm in

“Algorithm 3” deterministically solves the uniform transformation problem

in a finite number of cycles.

Algorithm 3 uniform transformation with one faulty robot

function Auniform(P, pi)

Require: Assume all robots are on the boundary of SEC(P)
Ensure: One of the robots is faulty (cannot move)
1: if ri is falty then
2: print This robot cannot move.
3: else
4: next(ri) ← direct neighbour of ri clockwise
5: n ← total number of robots
6: requiredAngularDiff ← 2*π/n
7: angularDiff ← (arc between next(ri))/(radius of circle)
8: if requiredAngularDiff > angularDiff then
9: target ← (requiredAngularDiff - angularDiff)*(radius of circle) in

anticlockwise direction move toward target.
10: else
11: if requiredAngularDiff < angularDiff then
12: target ← (angularDiff - requiredAngularDiff)*(radius of circle) in

clockwise direction move toward target
13: else
14: target ← currentPosition stand still.
15: end if
16: end if
17: end if

Proof. “Algorithm 3” deterministically solves the problem of uniform trans-

formation. Consider the robot just prev of the “immobile” robot, say rf .

26



rf robot will deterministically position itself in a finite number of cycles in

its prescribed position as its neighbour robot is not moving, thus, fixing its

target position for all the cycles. Now this rf robot also becomes “immobile”

as it is on its target position. Recursively considering the robot rf−1, this will

also deteministically position itself on the target position in a finite number

of cycles. Similarly, all robots will move to their target position and will form

a regular-polygon solving the uniform transformation problem.

This algorithm was simulated, and as derived, the movement of the robots

stopped after a finite number of cycles forming an uniform circle/regular

polygon. This result is shown in the pictures.

3.3.2 Situation 2

Assumming all the robots form a circle and we restrict the movement in only

counterclockwise direction. Then “Algorithm 4” deterministically solves the

problem of uniform transformation.

Algorithm 4 uniform transformation with movement restriction in one di-
rection
function Auniform(P, pi)

Require: Assume all robots are on the boundary of SEC(P)
Ensure: Robots can only move counterclockwise
1: prev(pi) ← direct neighbour of pi counterclockwise
2: next(pi) ← direct neighbour of pi clockwise
3: midpoint(pi) ← midpoint of arc prev(pi) & next(pi)
4: target ← midpoint of midpoint(pi)
5: if target in counterclockwise direction then

Move the robot ri to target
6: else

stand still.
7: end if
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Figure 3.4: I
nitial states of all the robots. The faulty robots is shown in blue color

(although it is anonymous in theory)
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Figure 3.5: F
inal states of all the robots. The faulty robots is shown in blue color

(although it is anonymous in theory). As shown, after a finite number of
iterations, they form a regular polygon.
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Figure 3.6: I
nitial states of all the robots. Algorithm 4.

Proof. “Algorithm 4” deterministically solves the problem of uniform trans-

formation. No rigorous prrof hasn been worked out. But, this algorithm

was simulated, and as in the diagrams shown, the movement of the robots

stopped after a finite number of cycles forming an uniform circle/regular

polygon.
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Figure 3.7: F
inal states of all the robots. Algorithm 4. They form a regular polygon.
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3.4 Combining the two parts

Now the sub-parts constructed can be joined to make one solution to a bigger

problem which is Uniform Circle Formation. This is shown in “Algorithm 5”.

When any robot is inside the circle, we run the algorithm for circle formation.

If all the robots are on the boundary of the smallest enclosed circle, it will

run one of the algorithms from 2, 3, 4 depending on the situation.

Algorithm 5 uniform circle formation (Combining the parts)

function Auniform−circle(P, pi)

1: if pi is in the interior of SEC(P) then
run Algorithm 1
Acircle(P, pi)

2: else
{All robots are on SEC(P)}
Algorithm 2, 3, 4 depending on the situation
Auniform(P, pi)

3: end if
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4
Conclusion

Results from references were collected about the possibilities and impossibil-

ities of the solutions for sub problems in pattern formation by autonomous,

anonymous, oblivious/non-oblivious and homogeneous robots. In order to

provide a deterministic and finite solution to the Uniform Circle Formation

problem, some strong assumptions were made in the model.

The result of the project can be summarised as follows:

• Uniform Circle Formation problem can be sub-divided into two parts(Circle

Formation and Uniform Transformation problems) and they can be

solved separately to get the solution to the bigger problem.
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• Circle Formation Problem can be solved for n ≥ 3 robots in a finite

number of cycles with oblivious robots.

• Currently, no deterministic algorithm for oblivious, anonymous mobile

robots exist to solve the Uniform transformation problem which termi-

nates in a finite number of cycles.

• Taking a stronger assumption on the model makes the Uniform trans-

formation problem solvable by oblivious robots in a finite number of

cycles.

• First assumption : Exactly one robot on the circle is “immobile”.

Now, the Uniform transformation problem is solvable by oblivious robots

in a finite number of cycles by the algorithm Algorithm 3 for n ≥ 2.

• Second assumption : Robots can only move in one direction (anti-

clockwise). Again, the Uniform transformation problem is solvable by

oblivious robots in a finite number of cycles by the algorithm Algorithm

3 for n ≥ 3.
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